0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Short-Term Results of Photobiomodulation Using Light-Emitting Diode Light of 670 nm in Eyes with Age-Related Macular Degeneration

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis.

          Numerous population-based studies of age-related macular degeneration have been reported around the world, with the results of some studies suggesting racial or ethnic differences in disease prevalence. Integrating these resources to provide summarised data to establish worldwide prevalence and to project the number of people with age-related macular degeneration from 2020 to 2040 would be a useful guide for global strategies. We did a systematic literature review to identify all population-based studies of age-related macular degeneration published before May, 2013. Only studies using retinal photographs and standardised grading classifications (the Wisconsin age-related maculopathy grading system, the international classification for age-related macular degeneration, or the Rotterdam staging system) were included. Hierarchical Bayesian approaches were used to estimate the pooled prevalence, the 95% credible intervals (CrI), and to examine the difference in prevalence by ethnicity (European, African, Hispanic, Asian) and region (Africa, Asia, Europe, Latin America and the Caribbean, North America, and Oceania). UN World Population Prospects were used to project the number of people affected in 2014 and 2040. Bayes factor was calculated as a measure of statistical evidence, with a score above three indicating substantial evidence. Analysis of 129,664 individuals (aged 30-97 years), with 12,727 cases from 39 studies, showed the pooled prevalence (mapped to an age range of 45-85 years) of early, late, and any age-related macular degeneration to be 8.01% (95% CrI 3.98-15.49), 0.37% (0.18-0.77), and 8.69% (4.26-17.40), respectively. We found a higher prevalence of early and any age-related macular degeneration in Europeans than in Asians (early: 11.2% vs 6.8%, Bayes factor 3.9; any: 12.3% vs 7.4%, Bayes factor 4.3), and early, late, and any age-related macular degeneration to be more prevalent in Europeans than in Africans (early: 11.2% vs 7.1%, Bayes factor 12.2; late: 0.5% vs 0.3%, 3.7; any: 12.3% vs 7.5%, 31.3). There was no difference in prevalence between Asians and Africans (all Bayes factors <1). Europeans had a higher prevalence of geographic atrophy subtype (1.11%, 95% CrI 0.53-2.08) than Africans (0.14%, 0.04-0.45), Asians (0.21%, 0.04-0.87), and Hispanics (0.16%, 0.05-0.46). Between geographical regions, cases of early and any age-related macular degeneration were less prevalent in Asia than in Europe and North America (early: 6.3% vs 14.3% and 12.8% [Bayes factor 2.3 and 7.6]; any: 6.9% vs 18.3% and 14.3% [3.0 and 3.8]). No significant gender effect was noted in prevalence (Bayes factor <1.0). The projected number of people with age-related macular degeneration in 2020 is 196 million (95% CrI 140-261), increasing to 288 million in 2040 (205-399). These estimates indicate the substantial global burden of age-related macular degeneration. Summarised data provide information for understanding the effect of the condition and provide data towards designing eye-care strategies and health services around the world. National Medical Research Council, Singapore. Copyright © 2014 Wong et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical classification of age-related macular degeneration.

            To develop a clinical classification system for age-related macular degeneration (AMD). Evidence-based investigation, using a modified Delphi process. Twenty-six AMD experts, 1 neuro-ophthalmologist, 2 committee chairmen, and 1 methodologist. Each committee member completed an online assessment of statements summarizing current AMD classification criteria, indicating agreement or disagreement with each statement on a 9-step scale. The group met, reviewed the survey results, discussed the important components of a clinical classification system, and defined new data analyses needed to refine a classification system. After the meeting, additional data analyses from large studies were provided to the committee to provide risk estimates related to the presence of various AMD lesions. Delphi review of the 9-item set of statements resulting from the meeting. Consensus was achieved in generating a basic clinical classification system based on fundus lesions assessed within 2 disc diameters of the fovea in persons older than 55 years. The committee agreed that a single term, age-related macular degeneration, should be used for the disease. Persons with no visible drusen or pigmentary abnormalities should be considered to have no signs of AMD. Persons with small drusen (<63 μm), also termed drupelets, should be considered to have normal aging changes with no clinically relevant increased risk of late AMD developing. Persons with medium drusen (≥ 63-<125 μm), but without pigmentary abnormalities thought to be related to AMD, should be considered to have early AMD. Persons with large drusen or with pigmentary abnormalities associated with at least medium drusen should be considered to have intermediate AMD. Persons with lesions associated with neovascular AMD or geographic atrophy should be considered to have late AMD. Five-year risks of progressing to late AMD are estimated to increase approximately 100 fold, ranging from a 0.5% 5-year risk for normal aging changes to a 50% risk for the highest intermediate AMD risk group. The proposed basic clinical classification scale seems to be of value in predicting the risk of late AMD. Incorporating consistent nomenclature into the practice patterns of all eye care providers may improve communication and patient care. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy.

              Photobiomodulation (PBM) also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infra-red region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential and ATP production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT.
                Bookmark

                Author and article information

                Journal
                Photobiomodulation, Photomedicine, and Laser Surgery
                Photobiomodulation, Photomedicine, and Laser Surgery
                Mary Ann Liebert Inc
                2578-5478
                September 01 2021
                September 01 2021
                : 39
                : 9
                : 581-586
                Affiliations
                [1 ]Rubens Siqueira Research Center, São Jose do Rio Preto, Brazil.
                [2 ]Faculty of Medicine of São José do Rio Preto—FAMERP, São Jose do Rio Preto, Brazil.
                [3 ]Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.
                [4 ]Physics Department, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
                Article
                10.1089/photob.2021.0005
                34546108
                29d782bd-2aeb-4c0b-a112-84192b03a1d4
                © 2021

                https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article