26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Current warming will reduce yields unless maize breeding and seed systems adapt immediately

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          The DSSAT cropping system model

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Rising temperatures reduce global wheat production

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How do various maize crop models vary in their responses to climate change factors?

              Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 μmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
                Bookmark

                Author and article information

                Journal
                Nature Climate Change
                Nature Clim Change
                Springer Science and Business Media LLC
                1758-678X
                1758-6798
                October 2016
                June 20 2016
                October 2016
                : 6
                : 10
                : 954-958
                Article
                10.1038/nclimate3061
                2a54e562-625d-43bc-9e6b-a7a9c7d2ba2e
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article