43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.

          Body fluid traces recovered at crime scenes are among the most important types of evidence to forensic investigators. They contain valuable DNA evidence which can identify a suspect or victim as well as exonerate an innocent individual. The first step of identifying a particular body fluid is highly important since the nature of the fluid is itself very informative to the investigation, and the destructive nature of a screening test must be considered when only a small amount of material is available. The ability to characterize an unknown stain at the scene of the crime without having to wait for results from a laboratory is another very critical step in the development of forensic body fluid analysis. Driven by the importance for forensic applications, body fluid identification methods have been extensively developed in recent years. The systematic analysis of these new developments is vital for forensic investigators to be continuously educated on possible superior techniques. Significant advances in laser technology and the development of novel light detectors have dramatically improved spectroscopic methods for molecular characterization over the last decade. The application of this novel biospectroscopy for forensic purposes opens new and exciting opportunities for the development of on-field, non-destructive, confirmatory methods for body fluid identification at a crime scene. In addition, the biospectroscopy methods are universally applicable to all body fluids unlike the majority of current techniques which are valid for individual fluids only. This article analyzes the current methods being used to identify body fluid stains including blood, semen, saliva, vaginal fluid, urine, and sweat, and also focuses on new techniques that have been developed in the last 5-6 years. In addition, the potential of new biospectroscopic techniques based on Raman and fluorescence spectroscopy is evaluated for rapid, confirmatory, non-destructive identification of a body fluid at a crime scene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis.

            The Fas ligand/Fas receptor (FasL/Fas) system is an important mediator of apoptosis in the immune system where the juxtaposition of cells expressing the cell-surface ligand induces the apoptotic pathway in Fas-expressing lymphocytes. The FasL/Fas system has also been shown to be involved in apoptosis in epithelial tissues, including the involuting rodent prostate. FasL can be shed through the action of an hitherto unidentified metalloproteinase to yield soluble FasL (sFasL), although the biological activity of sFasL has been disputed. Here we report that the matrix metalloproteinase matrilysin can process recombinant and cell-associated FasL to sFasL, and that matrilysin-generated sFasL was effective at inducing apoptosis in a target epithelial cell population. In the involuting mouse prostate, FasL and matrilysin colocalized to the cell surface in a restricted population of epithelial cells. Mice deficient in matrilysin demonstrated a 67% reduction in the apoptotic index in the involuting prostate compared with wild-type animals, implicating matrilysin in this FasL-mediated process. The results show that a functional form of sFasL was generated by the action of the metalloproteinase matrilysin, and suggest that matrilysin cleavage of FasL is an important mediator of epithelial cell apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biochemical composition of human saliva in relation to other mucosal fluids.

              This paper describes several salivary components and their distribution in other mucosal secretions. Histatins are polypeptides which possess exceptional anti-fungal and anti-bacterial activities, but are nevertheless present only in saliva. Proline-rich proteins (PRPs) are members of a closely related family, of which the acidic PRPs are found solely in saliva, whereas the basic PRPs are also found in other secretions. Mucins are a group of glycoproteins that contribute to the visco-elastic character of the mucosal secretions. Despite the similarities in their structure and behavior, mucins have distinct tissue distributions and amino acid sequences. Other salivary proteins are present in one or more mucosal secretions. Lysozyme is an example of a component belonging to an ancient self-defense system, whereas secretory immunoglobulin A (sIgA) is the secreted part of a sophisticated adaptive immune system. Cystatins are closely related proteins which belong to a multigene family. Alpha-Amylase is a component that is believed to play a specific role in digestion, but is nevertheless present in several body fluids. Kallikrein and albumin are components of blood plasma. But whereas albumin diffuses into the different mucosal secretions, kallikrein is secreted specifically by the mucosal glands. The presence of these proteins specifically in saliva, or their distribution in other mucosal secretions as well, may provide important clues with respect to the physiology of those proteins in the oral cavity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                3 July 2014
                : 9
                : 7
                : e100123
                Affiliations
                [1 ]Department of Forensic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
                [2 ]Shanghai Key Laboratory of Crime Science Evidence, Key Laboratory of Forensic Evidence and Science Technology, Ministry of Public Security, Institute of Forensic Science, Shanghai Public Security Bureau, Shanghai, China
                [3 ]Human Identification Division, Life Technologies, South San Francisco, California, United States of America
                Xi'an Jiaotong University School of Medicine, China
                Author notes

                Competing Interests: The authors declare no competing interests exist. Life Technologies, San Francisco, is not involved in any kind of activity in this study. There is no employment, consultancy, patents, products in development or marketed products from the company. The authors confirm that their study adheres to all PLOS ONE POLICIES on sharing data and materials.

                Conceived and designed the experiments: YX JHX HGZ LKC CX ZQZ. Performed the experiments: YX YC LHG WH GB. Analyzed the data: YX YC YP JYG CX. Contributed reagents/materials/analysis tools: HGZ YP CX ZQZ. Contributed to the writing of the manuscript: YX.

                Article
                PONE-D-14-15461
                10.1371/journal.pone.0100123
                4089028
                24991806
                2a837495-2624-4703-a680-4c9fa201a001
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 April 2014
                : 21 May 2014
                Page count
                Pages: 16
                Funding
                This study was supported by a grant from the P.R.C Ministry of Public Security for Scientific Research within the framework of the Forensic Genomics (No. 2012GABJC005). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Diagnostic Medicine
                Clinical Laboratory Sciences
                Forensics
                Forensic Genetics
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All data are included within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article