Blog
About


  • Record: found
  • Abstract: found
  • Article: not found

Swimming kinematics of the Florida manatee (Trichechus manatus latirostris): hydrodynamic analysis of an undulatory mammalian swimmer.

The Journal of Experimental Biology

10.1242/jeb.02790

17601944

physiology, anatomy & histology, Trichechus manatus, Tail, Swimming, Extremities, Biomechanical Phenomena, Animals

Read Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The submerged swimming of the Florida manatee (Trichechus manatus latirostris), a subspecies of the West Indian manatee, was studied by filming individuals as they swam rectilinearly in a large pool at several rehabilitation centers. The swimming was analyzed using videography to detail the kinematics in conjunction with a hydromechanical model to determine the power output (P(t)) and propulsive efficiency (eta(p)). Manatees swam at velocities of 0.06-1.14 m s(-1). Locomotion was accomplished by undulation of the body and caudal fluke. Undulatory locomotion is a rapid and relatively high-powered propulsive mode involved in cruising and migrating by a variety of swimmers. Manatees displayed an undulatory swimming mode by passing a dorso-ventrally oriented traveling wave posteriorly along the body. The propulsive wave traveled at a higher velocity than the forward velocity of the animal. The frequency of the propulsive cycle (f) increased linearly with increasing swimming velocity (U). Amplitude at the tip of the caudal fluke (A) remained constant with respect to U and was 22% of body length. P(t) increased curvilinearly with U. The mean eta(p), expressing the relationship of the thrust power generated by the paddle-shaped caudal fluke to the total mechanical power, was 0.73. The maximum eta(p) was 0.82 at 0.95 m s(-1). Despite use of a primitive undulatory swimming mode and paddle-like fluke for propulsion, the manatee is capable of swimming with a high efficiency but lower power outputs compared with the oscillatory movements of the high-aspect ratio flukes of cetaceans. The swimming performance of the manatee is in accordance with its habits as an aquatic grazer that seasonally migrates over extended distances.

      Related collections

      ScienceOpen disciplines:
      Keywords:

      Comments

      Comment on this article

      Register to benefit from advanced discovery features on more than 34,000,000 articles

      Already registered?

      Email*:
      Password*: