2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.

          The microbial adaptive immune system CRISPR mediates defense against foreign genetic elements through two classes of RNA-guided nuclease effectors. Class 1 effectors utilize multi-protein complexes, whereas class 2 effectors rely on single-component effector proteins such as the well-characterized Cas9. Here, we report characterization of Cpf1, a putative class 2 CRISPR effector. We demonstrate that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif. Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, we identified two candidate enzymes from Acidaminococcus and Lachnospiraceae, with efficient genome-editing activity in human cells. Identifying this mechanism of interference broadens our understanding of CRISPR-Cas systems and advances their genome editing applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Programming cells by multiplex genome engineering and accelerated evolution.

            The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CRISPR interference (CRISPRi) for sequence-specific control of gene expression.

              Sequence-specific control of gene expression on a genome-wide scale is an important approach for understanding gene functions and for engineering genetic regulatory systems. We have recently described an RNA-based method, CRISPR interference (CRISPRi), for targeted silencing of transcription in bacteria and human cells. The CRISPRi system is derived from the Streptococcus pyogenes CRISPR (clustered regularly interspaced palindromic repeats) pathway, requiring only the coexpression of a catalytically inactive Cas9 protein and a customizable single guide RNA (sgRNA). The Cas9-sgRNA complex binds to DNA elements complementary to the sgRNA and causes a steric block that halts transcript elongation by RNA polymerase, resulting in the repression of the target gene. Here we provide a protocol for the design, construction and expression of customized sgRNAs for transcriptional repression of any gene of interest. We also provide details for testing the repression activity of CRISPRi using quantitative fluorescence assays and native elongating transcript sequencing. CRISPRi provides a simplified approach for rapid gene repression within 1-2 weeks. The method can also be adapted for high-throughput interrogation of genome-wide gene functions and genetic interactions, thus providing a complementary approach to RNA interference, which can be used in a wider variety of organisms.
                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Synthetic Biology
                ACS Synth. Biol.
                American Chemical Society (ACS)
                2161-5063
                2161-5063
                January 15 2021
                December 24 2020
                January 15 2021
                : 10
                : 1
                : 125-131
                Affiliations
                [1 ]State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
                Article
                10.1021/acssynbio.0c00488
                33356154
                2b1b1427-fe55-4a62-ad5a-54a9ea61e24f
                © 2021
                History

                Comments

                Comment on this article