6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cyclodextrins as effective additives in AuNP-catalyzed reduction of nitrobenzene derivatives in a ball-mill

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At the boundary between mechanochemistry, supramolecular chemistry and catalysis, the present study explores the role of cyclodextrins (CDs) and other saccharide additives in the mechanosynthesis of gold nanoparticles (AuNPs) and their use as catalysts in the reduction of substituted nitrobenzene derivatives.

          Abstract

          At the boundary between mechanochemistry, supramolecular chemistry and catalysis, the present study explores the role of cyclodextrins (CDs) and other saccharide additives in the mechanosynthesis of gold nanoparticles (AuNPs) and their use as catalysts in the reduction of substituted nitrobenzene derivatives into their corresponding aniline products. CDs not only allow for the stabilization of the AuNPs but also help diffuse a substrate within a solid mixture via supramolecular means, and orient the chemical reaction to the selective formation of aniline derivatives. Parameters influencing both the formation of AuNPs and the synthesis of aniline derivatives have been investigated. We show that the catalytic performance strongly depends upon the nature of the saccharide additive, the nature and location of the substituent on the benzene, and the ball-milling conditions. Water also plays a key role in both the reduction mechanism of the nitro groups and the supramolecular interactions with the substrate. Very interestingly, the amount of reductive agent (NaBH 4) was drastically reduced compared to reductions performed in solution. Additionally, the catalytic system could be recycled over three consecutive runs without significant loss in activity, thus highlighting the efficacy of the combination of mechanochemistry, supramolecular chemistry, and catalysis.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found

          Mechanochemistry: opportunities for new and cleaner synthesis.

          The aim of this critical review is to provide a broad but digestible overview of mechanochemical synthesis, i.e. reactions conducted by grinding solid reactants together with no or minimal solvent. Although mechanochemistry has historically been a sideline approach to synthesis it may soon move into the mainstream because it is increasingly apparent that it can be practical, and even advantageous, and because of the opportunities it provides for developing more sustainable methods. Concentrating on recent advances, this article covers industrial aspects, inorganic materials, organic synthesis, cocrystallisation, pharmaceutical aspects, metal complexes (including metal-organic frameworks), supramolecular aspects and characterization methods. The historical development, mechanistic aspects, limitations and opportunities are also discussed (314 references). This journal is © The Royal Society of Chemistry 2012
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hallmarks of mechanochemistry: from nanoparticles to technology.

            The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanochemical organic synthesis.

              Recently, mechanical milling using a mixer mill or planetary mill has been fruitfully utilized in organic synthesis under solvent-free conditions. This review article provides a comprehensive overview of various solvent-free mechanochemical organic reactions, including metal-mediated or -catalyzed reactions, condensation reactions, nucleophilic additions, cascade reactions, Diels-Alder reactions, oxidations, reductions, halogenation/aminohalogenation, etc. The ball milling technique has also been applied to the synthesis of calixarenes, rotaxanes and cage compounds, asymmetric synthesis as well as the transformation of biologically active compounds.
                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2016
                2016
                : 18
                : 20
                : 5500-5509
                Affiliations
                [1 ]Univ. Artois
                [2 ]CNRS
                [3 ]Centrale Lille
                [4 ]ENSCL
                [5 ]Univ. Lille
                [6 ]UMR 8207
                [7 ]Unité Matériaux et Transformations
                Article
                10.1039/C6GC00770H
                2b3347ab-c570-48b5-be83-c05430b66806
                © 2016
                History

                Comments

                Comment on this article