13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evaluation of Daptomycin Non-Susceptible Staphylococcus aureus for Stability, Population Profiles, mprF Mutations, and Daptomycin Activity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Despite studies examining daptomycin non-susceptible (DNS) Staphylococcus aureus, examination of the stability and population profiles is limited. The objective was to evaluate the stability, population profiles, and daptomycin activity against DNS isolates.

          Methods

          The stability of 12 consecutive clinical DNS strains was evaluated by minimum inhibitory concentration (MICs) and population analysis profiles before and after 5 days of serial passage. Two pairs of DNS S. aureus having the same daptomycin MIC but different daptomycin population profiles were evaluated via an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations for 96 h against daptomycin 6 and 10 mg/kg/day. The sequence of mprF was determined for these isolates before and after 96 h of daptomycin exposure in the in vitro PK/PD model.

          Results

          Daptomycin MIC values were 2–4 mg/L (via Microscan) for the 12 clinical isolates; 9 were confirmed DNS and 3 were within 1 tube dilution of Microscan (daptomycin MIC 1 mg/L). All were stable to serial passage. There was variation in the isolates susceptibility to daptomycin on population analysis (daptomycin population AUC 14.01–26.85). The killing patterns of daptomycin 6 and 10 mg/kg/day differed between isolates with a left-shift and right-shift population profile to daptomycin. Two strains developed additional mprF mutations during daptomycin exposure in the in vitro PK/PD model resulting in P314L, L826F, S337L and a novel Q326Stop mutation.

          Conclusions

          The collection of DNS isolates was stable and displayed variation in susceptibility to daptomycin on population profile. Further research examining this clinical relevance is warranted.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s40121-013-0021-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database.

          Oxacillin-resistant Staphylococcus aureus (ORSA) is a virulent pathogen responsible for both health care-associated and community onset disease. We used SmaI-digested genomic DNA separated by pulsed-field gel electrophoresis (PFGE) to characterize 957 S. aureus isolates and establish a database of PFGE patterns. In addition to PFGE patterns of U.S. strains, the database contains patterns of representative epidemic-type strains from the United Kingdom, Canada, and Australia; previously described ORSA clonal-type isolates; 13 vancomycin-intermediate S. aureus (VISA) isolates, and two high-level vancomycin-resistant, vanA-positive strains (VRSA). Among the isolates from the United States, we identified eight lineages, designated as pulsed-field types (PFTs) USA100 through USA800, seven of which included both ORSA and oxacillin-susceptible S. aureus isolates. With the exception of the PFT pairs USA100 and USA800, and USA300 and USA500, each of the PFTs had a unique multilocus sequence type and spa type motif. The USA100 PFT, previously designated as the New York/Tokyo clone, was the most common PFT in the database, representing 44% of the ORSA isolates. USA100 isolates were typically multiresistant and included all but one of the U.S. VISA strains and both VRSA isolates. Multiresistant ORSA isolates from the USA200, -500, and -600 PFTs have PFGE patterns similar to those of previously described epidemic strains from Europe and Australia. The USA300 and -400 PFTs contained community isolates resistant only to beta-lactam drugs and erythromycin. Noticeably absent from the U.S. database were isolates with the previously described Brazilian and EMRSA15 PFGE patterns. These data suggest that there are a limited number of ORSA genotypes present in the United States.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus.

            Staphylococcal cassette chromosome mec (SCCmec) typing is essential for understanding the molecular epidemiology of methicillin-resistant Staphylococcus aureus (MRSA). SCCmec elements are currently classified into types I to V based on the nature of the mec and ccr gene complexes, and are further classified into subtypes according to their junkyard region DNA segments. Previously described traditional SCCmec PCR typing schemes require multiple primer sets and PCR experiments, while a previously published multiplex PCR assay is limited in its ability to detect recently discovered types and subtypes such as SCCmec type V and subtypes IVa, b, c, and d. We designed new sets of SCCmec type- and subtype-unique and specific primers and developed a novel multiplex PCR assay allowing for concomitant detection of the methicillin resistance (mecA gene) (also serving as an internal control) to facilitate detection and classification of all currently described SCCmec types and subtypes I, II, III, IVa, b, c, d, and V. Our assay demonstrated 100% sensitivity and specificity in accurately characterizing 54 MRSA strains belonging to the various known SCCmec types and subtypes, when compared with previously described typing methods. Further application of our assay in 453 randomly selected local clinical isolates confirmed its feasibility and practicality. This novel assay offers a rapid, simple, and feasible method for SCCmec typing of MRSA, and may serve as a useful tool for clinicians and epidemiologists in their efforts to prevent and control infections caused by this organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus.

              The objective of this study was to further elucidate the role of membrane potential in the mechanism of action of daptomycin, a novel lipopeptide antibiotic. Membrane depolarization was measured by both fluorimetric and flow cytometric assays. Adding daptomycin (5 micro g/ml) to Staphylococcus aureus gradually dissipated membrane potential. In both assays, cell viability was reduced by >99% and membrane potential was reduced by >90% within 30 min of adding daptomycin. Cell viability decreased in parallel with changes in membrane potential, demonstrating a temporal correlation between bactericidal activity and membrane depolarization. Decreases in viability and potential also showed a dose-dependent correlation. Depolarization is indicative of ion movement across the cytoplasmic membrane. Fluorescent probes were used to demonstrate Ca(2+)-dependent, daptomycin-triggered potassium release from S. aureus. Potassium release was also correlated with bactericidal activity. This study demonstrates a clear correlation between dissipation of membrane potential and the bactericidal activity of daptomycin. A multistep model for daptomycin's mechanism of action is proposed.
                Bookmark

                Author and article information

                Contributors
                m.rybak@wayne.edu , mrybak@dmc.org
                Journal
                Infect Dis Ther
                Infect Dis Ther
                Infectious Diseases and Therapy
                Springer Healthcare (Heidelberg )
                2193-8229
                2193-6382
                29 November 2013
                29 November 2013
                December 2013
                : 2
                : 2
                : 187-200
                Affiliations
                [ ]Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201 USA
                [ ]Microbiology Division, Detroit Medical Center University Laboratories, Detroit, USA
                [ ]John D. Dingell Veteran Affairs Medical Center, Detroit, USA
                [ ]School of Medicine, Wayne State University, Detroit, USA
                [ ]Detroit Medical Center, Detroit, USA
                Article
                21
                10.1007/s40121-013-0021-7
                4108102
                2baa40be-12a1-4271-b65f-17dcbc5b92b6
                © The Author(s) 2013
                History
                : 22 August 2013
                Categories
                Original Research
                Custom metadata
                © Springer Healthcare 2013

                daptomycin,daptomycin non-susceptible,infectious diseases,mprf,staphylococcus aureus

                Comments

                Comment on this article