12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-κB

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The proteasome inhibitor bortezomib is a new targeted treatment option for refractory or relapsed acute lymphoblastic leukemia (ALL) patients. However, a limited efficacy of bortezomib alone has been reported. A terminal pro-apoptotic endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is one of the several mechanisms of bortezomib-induced apoptosis. Recently, it has been documented that UPR disruption could be considered a selective anti-leukemia therapy. CX-4945, a potent casein kinase (CK) 2 inhibitor, has been found to induce apoptotic cell death in T-ALL preclinical models, via perturbation of ER/UPR pathway. In this study, we analyzed in T- and B-ALL preclinical settings, the molecular mechanisms of synergistic apoptotic effects observed after bortezomib/CX-4945 combined treatment. We demonstrated that, adding CX-4945 after bortezomib treatment, prevented leukemic cells from engaging a functional UPR in order to buffer the bortezomib-mediated proteotoxic stress in ER lumen. We documented that the combined treatment decreased pro-survival ER chaperon BIP/Grp78 expression, via reduction of chaperoning activity of Hsp90. Bortezomib/CX-4945 treatment inhibited NF-κB signaling in T-ALL cell lines and primary cells from T-ALL patients, but, intriguingly, in B-ALL cells the drug combination activated NF-κB p65 pro-apoptotic functions. In fact in B-cells, the combined treatment induced p65-HDAC1 association with consequent repression of the anti-apoptotic target genes, Bcl-xL and XIAP. Exposure to NEMO (IKKγ)-binding domain inhibitor peptide reduced the cytotoxic effects of bortezomib/CX-4945 treatment. Overall, our findings demonstrated that CK2 inhibition could be useful in combination with bortezomib as a novel therapeutic strategy in both T- and B-ALL.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.

          A generalized method for analyzing the effects of multiple drugs and for determining summation, synergism and antagonism has been proposed. The derived, generalized equations are based on kinetic principles. The method is relatively simple and is not limited by whether the dose-effect relationships are hyperbolic or sigmoidal, whether the effects of the drugs are mutually exclusive or nonexclusive, whether the ligand interactions are competitive, noncompetitive or uncompetitive, whether the drugs are agonists or antagonists, or the number of drugs involved. The equations for the two most widely used methods for analyzing synergism, antagonism and summation of effects of multiple drugs, the isobologram and fractional product concepts, have been derived and been shown to have limitations in their applications. These two methods cannot be used indiscriminately. The equations underlying these two methods can be derived from a more generalized equation previously developed by us (59). It can be shown that the isobologram is valid only for drugs whose effects are mutually exclusive, whereas the fractional product method is valid only for mutually nonexclusive drugs which have hyperbolic dose-effect curves. Furthermore, in the isobol method, it is laborious to find proper combinations of drugs that would produce an iso-effective curve, and the fractional product method tends to give indication of synergism, since it underestimates the summation of the effect of mutually nonexclusive drugs that have sigmoidal dose-effect curves. The method described herein is devoid of these deficiencies and limitations. The simplified experimental design proposed for multiple drug-effect analysis has the following advantages: It provides a simple diagnostic plot (i.e., the median-effect plot) for evaluating the applicability of the data, and provides parameters that can be directly used to obtain a general equation for the dose-effect relation; the analysis which involves logarithmic conversion and linear regression can be readily carried out with a simple programmable electronic calculator and does not require special graph paper or tables; and the simplicity of the equation allows flexibility of application and the use of a minimum number of data points. This method has been used to analyze experimental data obtained from enzymatic, cellular and animal systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity.

            Cellular senescence acts as a potent barrier to tumorigenesis and contributes to the anti-tumor activity of certain chemotherapeutic agents. Senescent cells undergo a stable cell cycle arrest controlled by RB and p53 and, in addition, display a senescence-associated secretory phenotype (SASP) involving the production of factors that reinforce the senescence arrest, alter the microenvironment, and trigger immune surveillance of the senescent cells. Through a proteomics analysis of senescent chromatin, we identified the nuclear factor-κB (NF-κB) subunit p65 as a major transcription factor that accumulates on chromatin of senescent cells. We found that NF-κB acts as a master regulator of the SASP, influencing the expression of more genes than RB and p53 combined. In cultured fibroblasts, NF-κB suppression causes escape from immune recognition by natural killer (NK) cells and cooperates with p53 inactivation to bypass senescence. In a mouse lymphoma model, NF-κB inhibition bypasses treatment-induced senescence, producing drug resistance, early relapse, and reduced survival. Our results demonstrate that NF-κB controls both cell-autonomous and non-cell-autonomous aspects of the senescence program and identify a tumor-suppressive function of NF-κB that contributes to the outcome of cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GRP78 induction in cancer: therapeutic and prognostic implications.

              Amy S. Lee (2007)
              Cancer cells adapt to chronic stress in the tumor microenvironment by inducing the expression of GRP78/BiP, a major endoplasmic reticulum chaperone with Ca(2+)-binding and antiapoptotic properties. GRP78 promotes tumor proliferation, survival, metastasis, and resistance to a wide variety of therapies. Thus, GRP78 expression may serve as a biomarker for tumor behavior and treatment response. Combination therapy suppressing GRP78 expression may represent a novel approach toward eradication of residual tumors. Furthermore, the recent discovery of GRP78 on the cell surface of cancer cells but not in normal tissues suggests that targeted therapy against cancer via surface GRP78 may be feasible.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                12 January 2016
                22 November 2015
                : 7
                : 2
                : 1323-1340
                Affiliations
                1 Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
                2 Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
                3 Department of Human Social and Health Sciences, Campus Folcara, University of Cassino, Cassino, Italy
                4 Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
                5 Institute of Molecular Genetics, National Research Council-Rizzoli Orthopedic Institute, Bologna, Italy
                6 Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
                7 Department of Surgery, Medicine, Odontostomatology and Morphological Sciences, University of Modena, Modena, Italy
                8 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
                9 Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville, NC, USA
                Author notes
                Correspondence to: Alberto Maria Martelli, alberto.martelli@ 123456unibo.it
                Article
                10.18632/oncotarget.6361
                4811463
                26593250
                2c2296ce-fd4c-49d0-a52f-cf822bb198ce
                Copyright: © 2016 Buontempo et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 June 2015
                : 15 November 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                acute lymphoblastic leukemia,ck2,unfolded protein response,bip/grp78,nf-κb

                Comments

                Comment on this article