13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new fibrinogenolytic metalloproteinase (Bmoo FIBMP-I) was purified from Bothrops moojeni snake venom. This enzyme was isolated through a combination of three chromatographic steps (ion-exchange, molecular exclusion, and affinity chromatography). Analyses by reverse phase chromatography, followed by mass spectrometry, showed the presence of enzyme isoforms with average molecular mass of 22.8 kDa. The SDS-PAGE analyses showed a single chain of 27.6 kDa, in the presence and absence of reducing agent. The protein has a blocked N-terminal. One of the peptides obtained by enzymatic digestion of a reduced and S-alkylated isoform was completely sequenced by mass spectrometry (MS/MS). Bmoo FIBMP-I showed similarity with hemorrhagic factor and several metalloproteinases (MP). This enzyme degraded A α-chain faster than the B β-chain and did not affect the γ-chain of bovine fibrinogen. The absence of proteolytic activity after treatment with EDTA, together with the observed molecular mass, led us to suggest that Bmoo FIBMP-I is a member of the P-I class of the snake venom MP family. Bmoo FIBMP-I showed pH-dependent proteolytic activity on azocasein, but was devoid of coagulant, defibrinating, or hemorrhagic activities. The kinetic parameters of proteolytic activity in azocasein were determined ( V max = 0.4596 Uh −1nmol −1 ± 0.1031 and K m = 14.59 mg/mL ± 4.610).

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases.

          The importance of proteinases in the pathologies associated with Viperid envenoming has long been appreciated. Over the past 40 years substantial research has clearly implicated metalloproteinases in the venom (snake venom metalloproteinases; SVMPs) as playing key roles in the development of such symptoms as hemorrhage, edema, hypotension, hypovolemia, inflammation and necrosis. In spite of this wealth of information there are still many unresolved questions pertaining to the structural basis for the various SVMPS giving rise to the diversity of activities. In this short review we will not attempt to provide an exhaustive collation of structural studies on the SVMPs; however, we will give a brief outline of the structural classification of the SVMPs; as well as relate them to the other members of the reprolysin family of metalloproteinases, the ADAMs. The information put forth in the text does not allow specific conclusions to be drawn on the structural basis for SVMP functional diversity, but it is our goal that it will allow for the development of testable hypotheses that can be experimentally pursued. What the reader will observe is that there are very interesting structural features displayed by the various SVMP classes and subclasses that provide insight into their functional characteristics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity.

            As more data are generated from proteome and transcriptome analyses of snake venoms, we are gaining an appreciation of the complexity of the venoms and, to some degree, the various sources of such complexity. However, our knowledge is still far from complete. The translation of genetic information from the snake genome to the transcriptome and ultimately the proteome is only beginning to be appreciated, and will require significantly more investigation of the snake venom genomic structure prior to a complete understanding of the genesis of venom composition. Venom complexity, however, is derived not only from the venom genomic structure but also from transcriptome generation and translation and, perhaps most importantly, post-translation modification of the nascent venom proteome. In this review, we examine the snake venom metalloproteinases, some of the predominant components in viperid venoms, with regard to possible synthesis and post-translational mechanisms that contribute to venom complexity. The aim of this review is to highlight the state of our knowledge on snake venom metalloproteinase post-translational processing and to suggest testable hypotheses regarding the cellular mechanisms associated with snake venom metalloproteinase complexity in venoms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage.

              The biochemical characteristics of hemorrhagic metalloproteinases isolated from snake venoms are reviewed, together with their role in the pathogenesis of the local tissue damage characteristic of crotaline and viperine snake envenomations. Venom metalloproteinases differ in their domain structure. Some enzymes comprise only the metalloproteinase domain, others have disintegrin-like and high cysteine domains and others present, besides these domains, an additional lectin-like subunit. All of them are zinc-dependent enzymes with highly similar zinc binding environments. Some metalloproteinases induce hemorrhage by directly affecting mostly capillary blood vessels. It is suggested that hemorrhagic enzymes cleave, in a highly selective fashion, key peptide bonds of basement membrane components, thereby affecting the interaction between basement membrane and endothelial cells. As a consequence, these cells undergo a series of morphological and functional alterations in vivo, probably associated with biophysical hemodynamic factors such as tangential fluid shear stress. Eventually, gaps are formed in endothelial cells through which extravasation occurs. In addition to hemorrhage, venom metalloproteinases induce skeletal muscle damage, myonecrosis, which seems to be secondary to the ischemia that ensues in muscle tissue as a consequence of bleeding and reduced perfusion. Microvessel disruption by metalloproteinases also impairs skeletal muscle regeneration, being therefore responsible of fibrosis and permanent tissue loss after snakebites. Moreover, venom metalloproteinases participate in the degradation of extracellular matrix components and play a relevant role in the prominent local inflammatory response that characterizes snakebite envenomations, since they induce edema, activate endogenous matrix metalloproteinases (MMPs) and are capable of releasing TNF-alpha from its membrane-bound precursor. Owing to their protagonic role in the pathogenesis of local tissue damage, snake venom metalloproteinases constitute relevant targets for natural and synthetic inhibitors which may complement antivenoms in the neutralization of these effects.
                Bookmark

                Author and article information

                Journal
                ISRN Toxicol
                ISRN Toxicol
                ISRN.TOXICOLOGY
                ISRN Toxicology
                International Scholarly Research Network
                2090-6188
                2090-6196
                2012
                4 November 2012
                : 2012
                : 673941
                Affiliations
                1Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
                2Laboratório de Biologia Molecular de Produtos Naturais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
                3Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
                4Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
                5Laboratório de Físico-Química de Proteínas e Enzimologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
                Author notes

                Academic Editors: A. Cruz, F. Ducancel, and Y. N. Utkin

                Article
                10.5402/2012/673941
                3671731
                23762636
                2c31bf7b-acb2-4d02-b478-9b9b3c9c1de0
                Copyright © 2012 F. S. Torres et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 August 2012
                : 8 October 2012
                Categories
                Research Article

                Comments

                Comment on this article