10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroprotective Actions of Dietary Choline

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Choline is an essential nutrient for humans. It is a precursor of membrane phospholipids (e.g., phosphatidylcholine (PC)), the neurotransmitter acetylcholine, and via betaine, the methyl group donor S-adenosylmethionine. High choline intake during gestation and early postnatal development in rat and mouse models improves cognitive function in adulthood, prevents age-related memory decline, and protects the brain from the neuropathological changes associated with Alzheimer’s disease (AD), and neurological damage associated with epilepsy, fetal alcohol syndrome, and inherited conditions such as Down and Rett syndromes. These effects of choline are correlated with modifications in histone and DNA methylation in brain, and with alterations in the expression of genes that encode proteins important for learning and memory processing, suggesting a possible epigenomic mechanism of action. Dietary choline intake in the adult may also influence cognitive function via an effect on PC containing eicosapentaenoic and docosahexaenoic acids; polyunsaturated species of PC whose levels are reduced in brains from AD patients, and is associated with higher memory performance, and resistance to cognitive decline.

          Related collections

          Most cited references 186

          • Record: found
          • Abstract: found
          • Article: not found

          Alzheimer disease in the US population: prevalence estimates using the 2000 census.

          Current and future estimates of Alzheimer disease (AD) are essential for public health planning. To provide prevalence estimates of AD for the US population from 2000 through 2050. Alzheimer disease incidence estimates from a population-based, biracial, urban study, using a stratified random sampling design, were converted to prevalence estimates and applied to US Census Bureau estimates of US population growth. A geographically defined community of 3 adjacent neighborhoods in Chicago, Ill, applied to the US population. Alzheimer disease incidence was measured in 3838 persons free of AD at baseline; 835 persons were evaluated for disease incidence. Main Outcome Measure Current and future estimates of prevalence of clinically diagnosed AD in the US population. In 2000, there were 4.5 million persons with AD in the US population. By 2050, this number will increase by almost 3-fold, to 13.2 million. Owing to the rapid growth of the oldest age groups of the US population, the number who are 85 years and older will more than quadruple to 8.0 million. The number who are 75 to 84 years old will double to 4.8 million, while the number who are 65 to 74 years old will remain fairly constant at 0.3 to 0.5 million. The number of persons with AD in the US population will continue to increase unless new discoveries facilitate prevention of the disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation.

             Fei-Fei He,  E. Sun,  Hao Wu (2003)
            In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Changes in DNA methylation perturb neuronal function, and mutations in a methyl-CpG-binding protein, MeCP2, are associated with Rett syndrome. We report that increased synthesis of brain-derived neurotrophic factor (BDNF) in neurons after depolarization correlates with a decrease in CpG methylation within the regulatory region of the Bdnf gene. Moreover, increased Bdnf transcription involves dissociation of the MeCP2-histone deacetylase-mSin3A repression complex from its promoter. Our findings suggest that DNA methylation-related chromatin remodeling is important for activity-dependent gene regulation that may be critical for neural plasticity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dnmt3L and the establishment of maternal genomic imprints.

              Complementary sets of genes are epigenetically silenced in male and female gametes in a process termed genomic imprinting. The Dnmt3L gene is expressed during gametogenesis at stages where genomic imprints are established. Targeted disruption of Dnmt3L caused azoospermia in homozygous males, and heterozygous progeny of homozygous females died before midgestation. Bisulfite genomic sequencing of DNA from oocytes and embryos showed that removal of Dnmt3L prevented methylation of sequences that are normally maternally methylated. The defect was specific to imprinted regions, and global genome methylation levels were not affected. Lack of maternal methylation imprints in heterozygous embryos derived from homozygous mutant oocytes caused biallelic expression of genes that are normally expressed only from the allele of paternal origin. The key catalytic motifs characteristic of DNA cytosine methyltransferases have been lost from Dnmt3L, and the protein is more likely to act as a regulator of imprint establishment than as a DNA methyltransferase.
                Bookmark

                Author and article information

                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                28 July 2017
                August 2017
                : 9
                : 8
                Affiliations
                Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; bslack@ 123456bu.edu (B.E.S.); tmellott@ 123456bu.edu (T.J.M.)
                Author notes
                [* ]Correspondence: jbluszta@ 123456bu.edu
                Article
                nutrients-09-00815
                10.3390/nu9080815
                5579609
                28788094
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Comments

                Comment on this article