29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transketolase-Like 1 Expression Is Modulated during Colorectal Cancer Progression and Metastasis Formation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Transketolase-like 1 (TKTL1) induces glucose degradation through anaerobic pathways, even in presence of oxygen, favoring the malignant aerobic glycolytic phenotype characteristic of tumor cells. As TKTL1 appears to be a valid biomarker for cancer prognosis, the aim of the current study was to correlate its expression with tumor stage, probability of tumor recurrence and survival, in a series of colorectal cancer patients.

          Methodolody/Principal Findings

          Tumor tissues from 63 patients diagnosed with colorectal cancer at different stages of progression were analyzed for TKTL1 by immunohistochemistry. Staining was quantified by computational image analysis, and correlations between enzyme expression, local growth, lymph-node involvement and metastasis were assessed. The highest values for TKTL1 expression were detected in the group of stage III tumors, which showed significant differences from the other groups (Kruskal-Wallis test, P = 0.000008). Deeper analyses of T, N and M classifications revealed a weak correlation between local tumor growth and enzyme expression (Mann-Whitney test, P = 0.029), a significant association of the enzyme expression with lymph-node involvement (Mann-Whitney test, P = 0.0014) and a significant decrease in TKTL1 expression associated with metastasis (Mann-Whitney test, P = 0.0004).

          Conclusions/Significance

          To our knowledge, few studies have explored the association between variations in TKTL1 expression in the primary tumor and metastasis formation. Here we report downregulation of enzyme expression when metastasis appears, and a correlation between enzyme expression and regional lymph-node involvement in colon cancer. This finding may improve our understanding of metastasis and lead to new and more efficient therapies against cancer.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          A genetic model for colorectal tumorigenesis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptive therapy.

            A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894-903] Major FindingsWe present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if "treatment-for-cure strategy" is replaced by "treatment-for-stability." Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              A microenvironmental model of carcinogenesis.

              We propose that carcinogenesis requires tumour populations to surmount six distinct microenvironmental proliferation barriers that arise in the adaptive landscapes of normal and premalignant populations growing from epithelial surfaces. Somatic evolution of invasive cancer can then be viewed as a sequence of phenotypical adaptations to these barriers. The genotypical and phenotypical heterogeneity of cancer populations is explained by an equivalence principle in which multiple strategies can successfully adapt to the same barrier. This model provides a theoretical framework in which the diverse cancer genotypes and phenotypes can be understood according to their roles as adaptive strategies to overcome specific microenvironmental growth constraints.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                27 September 2011
                : 6
                : 9
                : e25323
                Affiliations
                [1 ]Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina at Universitat de Barcelona IBUB and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
                [2 ]Pathology Department, Hospital General Universitario de Alicante, Alicante, Spain
                [3 ]Gastroenterology Department, Hospital Clínic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
                Thomas Jefferson University, United States of America
                Author notes

                Conceived and designed the experiments: SDM. Performed the experiments: SDM MTC. Analyzed the data: SDM MTC AC MC. Contributed reagents/materials/analysis tools: SDM CA AC MC. Wrote the paper: SDM MTC AC MC.

                Article
                PONE-D-10-00728
                10.1371/journal.pone.0025323
                3181277
                21980427
                2c4f6bc4-a415-484c-a606-aee0ea50b7a6
                Diaz-Moralli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 August 2010
                : 1 September 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Biochemistry
                Cytochemistry
                Histochemistry
                Medicine
                Clinical Immunology
                Immunologic Techniques
                Immunohistochemical Analysis
                Diagnostic Medicine
                Pathology
                General Pathology
                Biomarkers
                Oncology
                Basic Cancer Research
                Metastasis
                Tumor Physiology
                Cancers and Neoplasms
                Gastrointestinal Tumors
                Colon Adenocarcinoma

                Uncategorized
                Uncategorized

                Comments

                Comment on this article