13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Minimal model of point contact Andreev reflection spectroscopy of multiband superconductors

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We formulate a minimal model of point contact Andreev reflection spectroscopy of a normal- metal/multiband superconductor interface. The theory generalizes the Blonder-Tinkham-Klapwijk (BTK) formulation to a multiband superconductor and it is based on the quantum waveguides theory. The proposed approach allows an analytic evaluation of the Andreev and normal reflection coefficients and thus is suitable for a data fitting of point contact experiments. The obtained differential conductance curves present distinctive features similar to the ones measured in the experiments on multiband systems, like the iron-based pnictides and the MgB2.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The BCS-like gap in superconductor SmFeAsO_0.85F_0.15

          Since the discovery of superconductivity in the cuprates two decades ago, it has been firmly established that the CuO_2 plane is consequential for high T_C superconductivity and a host of other very unusual properties. A new family of superconductors with the general composition of LaFeAsO_(1-x)F_x has recently been discovered but with the conspicuous lacking of the CuO_2 planes, thus raising the tantalizing questions of the different pairing mechanisms in these oxypnictide superconductors. Intimately related to pairing in a superconductor are the superconducting gap, its value, structure, and temperature dependence. Here we report the observation of a single gap in the superconductor SmFeAsO_0.85F_0.15 with T_C = 42 K as measured by Andreev spectroscopy. The gap value of 2Delta = 13.34+/-0.3 meV gives 2Delta/k_BT_C = 3.68, close to the BCS prediction of 3.53. The gap decreases with temperature and vanishes at T_C in a manner consistent with the Bardeen-Cooper-Schrieffer (BCS) prediction but dramatically different from that of the pseudogap behavior in the cuprate superconductors. Our results clearly indicate a nodeless gap order parameter, which is nearly isotropic in size across different sections of the Fermi surface, and are not compatible with models involving antiferromagnetic fluctuations, strong correlations, t-J model, and the like, originally designed for cuprates.
            Bookmark

            Author and article information

            Journal
            2014-07-28
            Article
            10.1103/PhysRevB.91.035427
            1407.7397
            2c591a72-7235-4650-9cc2-ae0e1c3adbb5

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            Phys. Rev. B 91, 035427 (2015)
            5 pages, 4 figures
            cond-mat.supr-con cond-mat.mes-hall

            Condensed matter,Nanophysics
            Condensed matter, Nanophysics

            Comments

            Comment on this article