9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radar-Based Heart Sound Detection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper introduces heart sound detection by radar systems, which enables touch-free and continuous monitoring of heart sounds. The proposed measurement principle entails two enhancements in modern vital sign monitoring. First, common touch-based auscultation with a phonocardiograph can be simplified by using biomedical radar systems. Second, detecting heart sounds offers a further feasibility in radar-based heartbeat monitoring. To analyse the performance of the proposed measurement principle, 9930 seconds of eleven persons-under-tests’ vital signs were acquired and stored in a database using multiple, synchronised sensors: a continuous wave radar system, a phonocardiograph (PCG), an electrocardiograph (ECG), and a temperature-based respiration sensor. A hidden semi-Markov model is utilised to detect the heart sounds in the phonocardiograph and radar data and additionally, an advanced template matching (ATM) algorithm is used for state-of-the-art radar-based heartbeat detection. The feasibility of the proposed measurement principle is shown by a morphology analysis between the data acquired by radar and PCG for the dominant heart sounds S1 and S2: The correlation is 82.97 ± 11.15% for 5274 used occurrences of S1 and 80.72 ± 12.16% for 5277 used occurrences of S2. The performance of the proposed detection method is evaluated by comparing the F-scores for radar and PCG-based heart sound detection with ECG as reference: Achieving an F1 value of 92.22 ± 2.07%, the radar system approximates the score of 94.15 ± 1.61% for the PCG. The accuracy regarding the detection timing of heartbeat occurrences is analysed by means of the root-mean-square error: In comparison to the ATM algorithm (144.9 ms) and the PCG-based variant (59.4 ms), the proposed method has the lowest error value (44.2 ms). Based on these results, utilising the detected heart sounds considerably improves radar-based heartbeat monitoring, while the achieved performance is also competitive to phonocardiography.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From vulnerable plaque to vulnerable patient--Part III: Executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report.

            Screening for early-stage asymptomatic cancers (eg, cancers of breast and colon) to prevent late-stage malignancies has been widely accepted. However, although atherosclerotic cardiovascular disease (eg, heart attack and stroke) accounts for more death and disability than all cancers combined, there are no national screening guidelines for asymptomatic (subclinical) atherosclerosis, and there is no government- or healthcare-sponsored reimbursement for atherosclerosis screening. Part I and Part II of this consensus statement elaborated on new discoveries in the field of atherosclerosis that led to the concept of the "vulnerable patient." These landmark discoveries, along with new diagnostic and therapeutic options, have set the stage for the next step: translation of this knowledge into a new practice of preventive cardiology. The identification and treatment of the vulnerable patient are the focuses of this consensus statement. In this report, the Screening for Heart Attack Prevention and Education (SHAPE) Task Force presents a new practice guideline for cardiovascular screening in the asymptomatic at-risk population. In summary, the SHAPE Guideline calls for noninvasive screening of all asymptomatic men 45-75 years of age and asymptomatic women 55-75 years of age (except those defined as very low risk) to detect and treat those with subclinical atherosclerosis. A variety of screening tests are available, and the cost-effectiveness of their use in a comprehensive strategy must be validated. Some of these screening tests, such as measurement of coronary artery calcification by computed tomography scanning and carotid artery intima-media thickness and plaque by ultrasonography, have been available longer than others and are capable of providing direct evidence for the presence and extent of atherosclerosis. Both of these imaging methods provide prognostic information of proven value regarding the future risk of heart attack and stroke. Careful and responsible implementation of these tests as part of a comprehensive risk assessment and reduction approach is warranted and outlined by this report. Other tests for the detection of atherosclerosis and abnormal arterial structure and function, such as magnetic resonance imaging of the great arteries, studies of small and large artery stiffness, and assessment of systemic endothelial dysfunction, are emerging and must be further validated. The screening results (severity of subclinical arterial disease) combined with risk factor assessment are used for risk stratification to identify the vulnerable patient and initiate appropriate therapy. The higher the risk, the more vulnerable an individual is to a near-term adverse event. Because <10% of the population who test positive for atherosclerosis will experience a near-term event, additional risk stratification based on reliable markers of disease activity is needed and is expected to further focus the search for the vulnerable patient in the future. All individuals with asymptomatic atherosclerosis should be counseled and treated to prevent progression to overt clinical disease. The aggressiveness of the treatment should be proportional to the level of risk. Individuals with no evidence of subclinical disease may be reassured of the low risk of a future near-term event, yet encouraged to adhere to a healthy lifestyle and maintain appropriate risk factor levels. Early heart attack care education is urged for all individuals with a positive test for atherosclerosis. The SHAPE Task Force reinforces existing guidelines for the screening and treatment of risk factors in younger populations. Cardiovascular healthcare professionals and policymakers are urged to adopt the SHAPE proposal and its attendant cost-effectiveness as a new strategy to contain the epidemic of atherosclerotic cardiovascular disease and the rising cost of therapies associated with this epidemic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Logistic Regression-HSMM-Based Heart Sound Segmentation.

              The identification of the exact positions of the first and second heart sounds within a phonocardiogram (PCG), or heart sound segmentation, is an essential step in the automatic analysis of heart sound recordings, allowing for the classification of pathological events. While threshold-based segmentation methods have shown modest success, probabilistic models, such as hidden Markov models, have recently been shown to surpass the capabilities of previous methods. Segmentation performance is further improved when a priori information about the expected duration of the states is incorporated into the model, such as in a hidden semi-Markov model (HSMM). This paper addresses the problem of the accurate segmentation of the first and second heart sound within noisy real-world PCG recordings using an HSMM, extended with the use of logistic regression for emission probability estimation. In addition, we implement a modified Viterbi algorithm for decoding the most likely sequence of states, and evaluated this method on a large dataset of 10,172 s of PCG recorded from 112 patients (including 12,181 first and 11,627 second heart sounds). The proposed method achieved an average F1 score of 95.63 ± 0.85%, while the current state of the art achieved 86.28 ± 1.55% when evaluated on unseen test recordings. The greater discrimination between states afforded using logistic regression as opposed to the previous Gaussian distribution-based emission probability estimation as well as the use of an extended Viterbi algorithm allows this method to significantly outperform the current state-of-the-art method based on a two-sided paired t-test.
                Bookmark

                Author and article information

                Contributors
                christoph.will@fau.de
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                26 July 2018
                26 July 2018
                2018
                : 8
                : 11551
                Affiliations
                [1 ]ISNI 0000 0001 2107 3311, GRID grid.5330.5, Institute for Electronics Engineering, , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), ; 91058 Erlangen, Germany
                [2 ]ISNI 0000 0001 2107 3311, GRID grid.5330.5, Department of Palliative Medicine, Universitätsklinikum Erlangen, Comprehensive Cancer Center CCC Erlangen - EMN, , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), ; 91054 Erlangen, Germany
                [3 ]ISNI 0000 0001 2188 0404, GRID grid.8842.6, Chair for Electronics and Sensor Systems, , Brandenburg University of Technology, ; 03046 Cottbus, Germany
                Author information
                http://orcid.org/0000-0002-1492-1551
                http://orcid.org/0000-0001-9825-3927
                http://orcid.org/0000-0001-6884-6051
                http://orcid.org/0000-0002-9071-5661
                Article
                29984
                10.1038/s41598-018-29984-5
                6070547
                30068983
                2cee4986-72c7-47ca-b40f-6b23bfffa71d
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 January 2018
                : 18 July 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100002347, Bundesministerium f&amp;#x00FC;r Bildung und Forschung (Federal Ministry of Education and Research);
                Award ID: 16SV7695
                Award ID: 16SV7695
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article