11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Miniaturized Quantum Semiconductor Surface Plasmon Resonance Platform for Detection of Biological Molecules

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The concept of a portable, inexpensive and semi-automated biosensing platform, or lab-on-a-chip, is a vision shared by many researchers and venture industries. Under this scope, we have investigated the application of optical emission from quantum well (QW) microstructures for monitoring surface phenomena on gold layers remaining in proximity (<300 nm) with QW microstructures. The uncollimated QW radiation excites surface plasmons (SP) and through the surface plasmon resonance (SPR) effect allows for detection of small perturbation in the density surface adsorbates. The SPR technology is already commonly used for biochemical characterization in pharmaceutical industries, but the reduction of the distance between the SP exciting source and the biosensing platform to a few hundreds of nanometers is an innovative approach enabling us to achieve an ultimate miniaturization of the device. We evaluate the signal quality of this nanophotonic QW-SPR device using hyperspectral-imaging technology, and we compare its performance with that of a standard prism-based commercial system. Two standard biochemical agents are employed for this characterization study: bovine serum albumin and inactivated influenza A virus. With an innovative conical method of SPR data collection, we demonstrate that individually collected SPR scan, each in less than 2.2 s, yield a resolution of the detection at 1.5 × 10 −6 RIU.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress.

          The use of surface plasmon resonance (SPR) biosensors is increasingly popular in fundamental biological studies, health science research, drug discovery, clinical diagnosis, and environmental and agricultural monitoring. SPR allows for the qualitative and quantitative measurements of biomolecular interactions in real-time without requiring a labeling procedure. Today, the development of SPR is geared toward the design of compact, low-cost, and sensitive biosensors. Rapid advances in micro-fabrication technology have made available integratable opto-electronic components suitable for SPR. This review paper focuses on the progress made over the past 4 years toward this integration. Readers will find the descriptions of novel SPR optical approaches and materials. Nano-technology is also increasingly used in the design of biologically optimized and optically enhanced surfaces for SPR. Much of this work is leading to the integration of sensitive SPR to lab-on-a-chip platforms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Micro total analysis system (micro-TAS) in biotechnology.

            Nanobiotechnology raises fascinating possibilities for new analytical assays in various fields such as bioelectronic assembly, biomechanics and sampling techniques, as well as in chips or micromachined devices. Recently, nanotechnology has greatly impacted biotechnological research with its potential applications in smart devices that can operate at the level of molecular manipulation. Micro total analysis system (micro-TAS) offers the potential for highly efficient, simultaneous analysis of a large number of biologically important molecules in genomic, proteomic and metabolic studies. This review aims to describe the present state-of-the-art of microsystems for use in biotechnological research, medicine and diagnostics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications

                Bookmark

                Author and article information

                Journal
                Biosensors (Basel)
                Biosensors (Basel)
                biosensors
                Biosensors
                MDPI
                2079-6374
                07 June 2013
                June 2013
                : 3
                : 2
                : 201-210
                Affiliations
                Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Interdisciplinary Institute for Technological Innovation (3IT), Faculty of Engineering, Université de Sherbrooke, 3000 boul. de l’Université, Sherbrooke, QC J1K 0A5, Canada; E-Mail: dominic.lepage@ 123456usherbrooke.ca
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: jan.j.dubowski@ 123456usherbrooke.ca ; Tel.: +1-819-821-8000; Fax: +1-819-821-7937.
                Article
                biosensors-03-00201
                10.3390/bios3020201
                4263536
                2d8f1bbc-eb8d-4935-b210-ca959494ddf9
                © 2013 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 28 April 2013
                : 22 May 2013
                : 24 May 2013
                Categories
                Review

                surface plasmon resonance,quantum semiconductor emitters,nanophotonic devices,hyperspectral imaging

                Comments

                Comment on this article