16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Soil Biogenic Volatile Organic Compound Flux in a Mixed Hardwood Forest: Net Uptake at Warmer Temperatures and the Importance of Mycorrhizal Associations

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycorrhizas and soil structure.

            In addition to their well-recognized roles in plant nutrition and communities, mycorrhizas can influence the key ecosystem process of soil aggregation. Here we review the contribution of mycorrhizas, mostly focused on arbuscular mycorrhizal fungi (AMF), to soil structure at various hierarchical levels: plant community; individual root; and the soil mycelium. There are a suite of mechanisms by which mycorrhizal fungi can influence soil aggregation at each of these various scales. By extension of these mechanisms to the question of fungal diversity, it is recognized that different species or communities of fungi can promote soil aggregation to different degrees. We argue that soil aggregation should be included in a more complete 'multifunctional' perspective of mycorrhizal ecology, and that in-depth understanding of mycorrhizas/soil process relationships will require analyses emphasizing feedbacks between soil structure and mycorrhizas, rather than a uni-directional approach simply addressing mycorrhizal effects on soils. We finish the discussion by highlighting new tools, developments and foci that will probably be crucial in further understanding mycorrhizal contributions to soil structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant functional traits and soil carbon sequestration in contrasting biomes.

              Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Geophysical Research: Biogeosciences
                J. Geophys. Res. Biogeosci.
                American Geophysical Union (AGU)
                2169-8953
                2169-8961
                April 2020
                April 03 2020
                April 2020
                : 125
                : 4
                Affiliations
                [1 ]Department of EntomologyUniversity of Wisconsin‐Madison Madison WI USA
                [2 ]Department of Land Resources and Environmental SciencesMontana State University Bozeman MT USA
                [3 ]Department of Biological Systems EngineeringUniversity of Wisconsin‐Madison Madison WI USA
                [4 ]Department of BiologyIndiana University, Bloomington Bloomington IN USA
                Article
                10.1029/2019JG005479
                2dae39e7-4894-4c09-af02-181d3f43515e
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article