Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Design of Lubricant Infused Surfaces.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lubricant infused surfaces (LIS) are a recently developed and promising approach to fluid repellency for applications in biology, microfluidics, thermal management, lab-on-a-chip, and beyond. The design of LIS has been explored in past work in terms of surface energies, which need to be determined empirically for each interface in a given system. Here, we developed an approach that predicts a priori whether an arbitrary combination of solid and lubricant will repel a given impinging fluid. This model was validated with experiments performed in our work as well as in literature and was subsequently used to develop a new framework for LIS with distinct design guidelines. Furthermore, insights gained from the model led to the experimental demonstration of LIS using uncoated high-surface-energy solids, thereby eliminating the need for unreliable low-surface-energy coatings and resulting in LIS repelling the lowest surface tension impinging fluid (butane, γ ≈ 13 mN/m) reported to date.

          Related collections

          Author and article information

          Journal
          ACS Appl Mater Interfaces
          ACS applied materials & interfaces
          American Chemical Society (ACS)
          1944-8252
          1944-8244
          Dec 06 2017
          : 9
          : 48
          Affiliations
          [1 ] Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
          Article
          10.1021/acsami.7b14311
          29121462
          2db057b3-aad0-4ae0-bd8e-4939819d774f
          History

          surface engineering,surface energy,soft materials,slippery materials,interfacial phenomena,fluid repellency,bioinspired surfaces

          Comments

          Comment on this article