9
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Motional dynamics of functional cytochrome c delivered by low pH fusion into the intermembrane space of intact mitochondria.

      1 ,
      Biochimica et biophysica acta

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have investigated the motional dynamics of cytochrome c in the intact, functional rat liver mitochondrion. To do this, functional, FITC-cytochrome c (fluorescein isothiocyanate monoderivatized cytochrome c) was incorporated into the intermembrane space (IMS) of intact mitochondria through encapsulation of cytochrome c into asolectin liposomes followed by low pH-induced fusion of the liposomes with the outer membranes of the mitochondria. A cytochrome c controlled enrichment of between 15%-50% (1800-7200 molecules incorporated per mitochondrion) was obtained. All cytochrome c incorporated, regardless of the quantity, participated in the function of electron transport, indicative of a functional, independent random diffusant. Resonance energy transfer was determined from the IMS-entrapped functional FITC-cytochrome c to octadecylrhodamine B incorporated into the mitochondrial membranes. Resonance energy transfer from FITC-cytochrome c to octadecylrhodamine B in isolated inner or outer mitochondrial membranes (IMM and OMM, respectively) was also measured. We found substantial differences in the effects of ionic strength (I) on the proximity of cytochrome c to isolated IMM and OMM. Interactions with isolated IMM were very dynamic, i.e., very I-dependent, and cytochrome c binding to IMM was significant only at very low I. I-dependent interactions of cytochrome c with isolated OMM were less I-dependent than those for the IMM. However, FITC-cytochrome c was essentially released from IMM and OMM at physiological I. The proximity of FITC-cytochrome c to each mitochondrial membrane after its incorporation into the IMS of intact mitochondria in the condensed configuration was estimated at different external, bulk I using: (a) resonance energy transfer from IMS-entrapped FITC-cytochrome c to octadecylrhodamine B-label evenly distributed in both mitochondrial membranes; and (b) resonance energy transfer from IMS-entrapped FITC-cytochrome c to octadecylrhodamine B-label concentrated in the OMM. Resonance energy transfer showed that the average distance between cytochrome c and the two IMS-membrane surfaces increased with increasing IMS-I, approaching a maximal measurable distance of 85 A at 150 mM I. This result is consistent with a dissociation of FITC-cytochrome c and both membranes of intact mitochondria at physiological I, i.e., when the activity of cytochrome c in electron transport is highest. Our findings reveal a primarily three-dimensional diffusion mode for IMS-cytochrome c during its function in electron transport in intact mitochondria at physiological I, and offer further evidence that mitochondrial electron transport is a process driven by random collisions between its independently diffusing electron transferring, redox components.

          Related collections

          Author and article information

          Journal
          Biochim. Biophys. Acta
          Biochimica et biophysica acta
          0006-3002
          0006-3002
          Apr 05 1993
          : 1142
          : 1-2
          Affiliations
          [1 ] Department of Cell Biology and Anatomy, University of North Carolina, School of Medicine, Chapel Hill 27599-7090.
          Article
          0005-2728(93)90102-L
          8384490
          2e288965-7d65-4010-a65b-6c6389b96f70
          History

          Comments

          Comment on this article