2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne - a MD study

      1
      Open Chemistry
      Walter de Gruyter GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanism of the adsorption and grafting of diazonium cations onto the surface of graphyne and graphdiyne was investigated using Density Functional Theory (DFT). The adsorption energy (both in vacuum and water as solvent) of the phenyl diazonium cation was evaluated at three different positions of the graphyne and graphdiyne surface. Moreover, the lowest energy adsorption sites were used to calculate and plot Non-covalent Interactions (NCI). The Bond Dissociation Energy (BDE) results (up to 66 kcal/mol) for the scission of the phenyl group support the remarkable stability of the grafted layer. As both of these materials are non-dispersible in aqueous solution, in this work through the use of Molecular Mechanics (MM) and Molecular Dynamics (MD) we explored also the effect of the grafted substituted aryl groups derived from aryldiazonium salts onto the solvation properties of these materials.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            VMD: Visual molecular dynamics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiwfn: a multifunctional wavefunction analyzer.

              Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Open Chemistry
                Walter de Gruyter GmbH
                2391-5420
                September 25 2019
                September 25 2019
                : 17
                : 1
                : 703-710
                Affiliations
                [1 ]Department of Chemistry, FNMS, University of Pristina “ Hasan Prishtina”, 10000 Pristina, Pristina, Republic of Kosovo
                Article
                10.1515/chem-2019-0083
                2e36cbcb-d530-4d49-a862-0b8e59d0c02a
                © 2019

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article