26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      RAFT polymerization to form stimuli-responsive polymers

      Polymer Chemistry
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.

          Stimuli-responsive polymers adapt to their surrounding environment. These polymers are capable of responding to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. They are encountered in many environments. They can have a variety of architectures ( e.g., copolymers, blocks, stars). They may be present as isolated macromolecules in a medium, as supramolecular assemblies, as smart coatings, as networks or some combination of these possibilities. This paper is concerned with the process of forming such polymers by radical polymerization with reversible addition fragmentation chain transfer (RAFT). RAFT polymerization has an advantage over most processes for reversible deactivation radical polymerization (RDRP) in its tolerance of a wide range of unprotected functionalities. Three basic strategies for forming stimuli-responsive polymers are considered: RAFT polymerization of functional monomers (a “grafting through” approach), the post-polymerization modification of RAFT-synthesized polymers (some combination of “grafting through”, “from” and “to”), and the use of functional RAFT agents and RAFT end-group transformation (often “grafting from”). Other syntheses involve combinations of these processes and of RAFT polymerization with other processes. We also consider the responsiveness of the thiocarbonylthio-functionality of macroRAFT agents in terms of their ability to directly initiate and control RAFT polymerization and to regulate the properties of RAFT-synthesized polymers.

          Related collections

          Most cited references624

          • Record: found
          • Abstract: not found
          • Article: not found

          Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Thiol-ene “click” reactions and recent applications in polymer and materials synthesis

                Bookmark

                Author and article information

                Journal
                PCOHC2
                Polymer Chemistry
                Polym. Chem.
                Royal Society of Chemistry (RSC)
                1759-9954
                1759-9962
                2017
                2017
                : 8
                : 1
                : 177-219
                Article
                10.1039/C6PY01849A
                2e3cd77b-ae36-45f8-af3e-c04e756f0fd0
                © 2017
                History

                Comments

                Comment on this article