Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Photochemistry of nitrate chemisorbed on various metal oxide surfaces.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atmospheric aerosols are known to provide an important surface for gas-solid interfaces that can lead to heterogeneous reactions impacting tropospheric chemistry. In this work, α-Fe2O3, TiO2, γ-Al2O3, SiO2 and ZnO, common components of atmospheric aerosols, served as models to investigate the gas-solid interface of nitric acid with aerosols in the presence of simulated solar radiation. Adsorbed nitrate and gaseous products can be continuously monitored with infrared spectroscopy (IR). Kinetic studies of adsorbed species were carried out using attenuated total reflectance infrared spectroscopy (ATR-FTIR). Ex situ simultaneous infrared spectroscopy of gas-phase products using a 2 m long path cell allowed the detection of gaseous products at early stages of the heterogeneous photochemical reaction. In addition, photoactive gaseous products, such as HONO, were detected as gas analysis was carried out outside the region of irradiation. All reactions were found to be first order with respect to adsorbed nitric acid and yielded gas-phase products such as NO, NO2, N2O4, N2O, and HONO. While the correlation between semiconductor properties of the metal oxide and the heterogeneous photochemical rate constant (j) is not direct, the semiconductor properties were found to play a role in the formation of relatively high proportions of greenhouse gas nitrous oxide (N2O).

          Related collections

          Author and article information

          Journal
          Phys Chem Chem Phys
          Physical chemistry chemical physics : PCCP
          Royal Society of Chemistry (RSC)
          1463-9084
          1463-9076
          Aug 28 2015
          : 17
          : 32
          Affiliations
          [1 ] Chemistry Department, Skidmore College, Saratoga Springs, NY 12866-1632, USA. jnavea@skidmore.edu.
          Article
          10.1039/c5cp02903a
          26214064
          2e8ff472-c288-4afa-b1ff-3e9787623e5b
          History

          Comments

          Comment on this article