20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antihyperglycemic Potential of Grewia asiatica Fruit Extract against Streptozotocin-Induced Hyperglycemia in Rats: Anti-Inflammatory and Antioxidant Mechanisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes mellitus is regarded as a serious chronic disease that carries a high risk for considerable complications. In folk medicine, the edible Grewia asiatica fruit is used in a number of pathological conditions. This study aimed to investigate the possible curative effect of G. asiatica fruit ethanolic extract against streptozotocin- (STZ-) induced hyperglycemia in rats. Furthermore, mechanism of antihyperglycemic action is investigated. Hyperglycemic rats are either treated with 100 or 200 mg/kg/day G. asiatica fruits extract. Serum glucose, liver glycogen, malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin- (IL-) 1 β, and tumor necrosis factor- (TNF-) α are measured. G. asiatica fruits extract reduces blood glucose and pancreatic MDA levels. It increases liver glycogen and pancreatic GSH contents and SOD enzyme activity. Furthermore, Grewia asiatica fruits extract decreases serum IL-1 β and TNF- α. The treatment also protects against STZ-induced pathological changes in the pancreas. The results of this study indicated that G. asiatica fruit extract exerts antihyperglycemic activity against STZ-induced hyperglycemia. The improvement in the pancreatic β-cells and antioxidant and anti-inflammatory effects of G. asiatica fruit extract may explain the antihyperglycemic effect.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Infections in patients with diabetes mellitus.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus.

            Extracts of six selected Malaysian plants with a reputation of usefulness in treating diabetes were examined for alpha-amylase inhibition using an in vitro model. Inhibitory activity studied by two different protocols (with and without pre-incubation) showed that Phyllanthus amarus hexane extract had alpha-amylase inhibitory properties. Hexane and dichloromethane extracts of Anacardium occidentale, Lagerstroemia speciosa, Averrhoa bilimbiPithecellobium jiringa and Parkia speciosa were not active when tested without pre-incubation. Extraction and fractionation of Phyllanthus amarus hexane extract led to the isolation of dotriacontanyl docosanoate, triacontanol and a mixture of oleanolic acid and ursolic acid. Dotriacontanyl docosanoate and the mixture of oleanolic acid and ursolic acid are reported from this plant species for the first time. All compounds were tested in the alpha-amylase inhibition assay and the results revealed that the oleanolic acid and ursolic acid (2:1) mixture was a potent alpha-amylase inhibitor with IC(50)=2.01 microg/ml (4.41 microM) and that it contributes significantly to the alpha-amylase inhibition activity of the extract. Three pure pentacyclic triterpenoids, oleanolic acid, ursolic acid and lupeol were shown to inhibit alpha-amylase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood.

              Concentrations of a peroxidation product (malondialdehyde), fluorescent chromophores, lipofuscin-like fluorescent products, superoxide dismutase, catalase, glutathione peroxidase, and vitamin E in the maternal blood and the cord blood were determined and the results obtained were related to the estimation of lipid peroxidation and protective mechanism against uncontrolled oxidative processes in late pregnancy. Serum levels of fluorescent products were higher in the maternal blood than in the cord blood, indicating less frequent lipid peroxidation in the fetus than in the mother. In support of this assumption, the three protective enzymes and vitamin E were present in relatively lower concentrations in the cord blood. Sudden exposure of the newborn infant to a normobaric atmosphere after beginning breathing seems, therefore, to cause oxidation of red blood cell membrane, denaturation of the membrane, inducing hemoglobin breakdown, and consequently hemolysis.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2015
                5 August 2015
                : 2015
                : 549743
                Affiliations
                1Department of Food and Nutrition, Faculty of Home Economics, King Abdulaziz University, Jeddah, Saudi Arabia
                2Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Egypt
                3Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
                4Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
                5Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
                Author notes

                Academic Editor: Vittorio Calabrese

                Article
                10.1155/2015/549743
                4542021
                2eccdd5c-c589-4340-a906-3f568bf4dba5
                Copyright © 2015 Hala A. H. Khattab et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 June 2015
                : 14 July 2015
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article