49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-risk human papillomavirus (HR-HPV) has been recognized as a major causative agent for cervical cancer. Upon HPV infection, early genes E6 and E7 play important roles in maintaining malignant phenotype of cervical cancer cells. By using clustered regularly interspaced short palindromic repeats- (CRISPR-) associated protein system (CRISPR/Cas system), a widely used genome editing tool in many organisms, to target HPV16-E7 DNA in HPV positive cell lines, we showed for the first time that the HPV16-E7 single-guide RNA (sgRNA) guided CRISPR/Cas system could disrupt HPV16-E7 DNA at specific sites, inducing apoptosis and growth inhibition in HPV positive SiHa and Caski cells, but not in HPV negative C33A and HEK293 cells. Moreover, disruption of E7 DNA directly leads to downregulation of E7 protein and upregulation of tumor suppressor protein pRb. Therefore, our results suggest that HPV16-E7 gRNA guided CRISPR/Cas system might be used as a therapeutic strategy for the treatment of cervical cancer.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          The promises and pitfalls of RNA-interference-based therapeutics.

          The discovery that gene expression can be controlled by the Watson-Crick base-pairing of small RNAs with messenger RNAs containing complementary sequence - a process known as RNA interference - has markedly advanced our understanding of eukaryotic gene regulation and function. The ability of short RNA sequences to modulate gene expression has provided a powerful tool with which to study gene function and is set to revolutionize the treatment of disease. Remarkably, despite being just one decade from its discovery, the phenomenon is already being used therapeutically in human clinical trials, and biotechnology companies that focus on RNA-interference-based therapeutics are already publicly traded.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathways of DNA double-strand break repair during the mammalian cell cycle.

            Little is known about the quantitative contributions of nonhomologous end joining (NHEJ) and homologous recombination (HR) to DNA double-strand break (DSB) repair in different cell cycle phases after physiologically relevant doses of ionizing radiation. Using immunofluorescence detection of gamma-H2AX nuclear foci as a novel approach for monitoring the repair of DSBs, we show here that NHEJ-defective hamster cells (CHO mutant V3 cells) have strongly reduced repair in all cell cycle phases after 1 Gy of irradiation. In contrast, HR-defective CHO irs1SF cells have a minor repair defect in G(1), greater impairment in S, and a substantial defect in late S/G(2). Furthermore, the radiosensitivity of irs1SF cells is slight in G(1) but dramatically higher in late S/G(2), while V3 cells show high sensitivity throughout the cell cycle. These findings show that NHEJ is important in all cell cycle phases, while HR is particularly important in late S/G(2), where both pathways contribute to repair and radioresistance. In contrast to DSBs produced by ionizing radiation, DSBs produced by the replication inhibitor aphidicolin are repaired entirely by HR. irs1SF, but not V3, cells show hypersensitivity to aphidicolin treatment. These data provide the first evaluation of the cell cycle-specific contributions of NHEJ and HR to the repair of radiation-induced versus replication-associated DSBs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly.

              Broad applications of zinc finger nuclease (ZFN) technology-which allows targeted genome editing-in research, medicine, and biotechnology are hampered by the lack of a convenient, rapid, and publicly available method for the synthesis of functional ZFNs. Here we describe an efficient and easy-to-practice modular-assembly method using publicly available zinc fingers to make ZFNs that can modify the DNA sequences of predetermined genomic sites in human cells. We synthesized and tested hundreds of ZFNs to target dozens of different sites in the human CCR5 gene-a co-receptor required for HIV infection-and found that many of these nucleases induced site-specific mutations in the CCR5 sequence. Because human cells that harbor CCR5 null mutations are functional and normal, these ZFNs might be used for (1) knocking out CCR5 to produce T-cells that are resistant to HIV infection in AIDS patients or (2) inserting therapeutic genes at "safe sites" in gene therapy applications.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                20 July 2014
                : 2014
                : 612823
                Affiliations
                1Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
                2Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
                3Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
                Author notes

                Academic Editor: Xin Ming

                Article
                10.1155/2014/612823
                4127252
                25136604
                2ee888c7-c09c-4c13-874e-b7628245babf
                Copyright © 2014 Zheng Hu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 April 2014
                : 15 June 2014
                Categories
                Research Article

                Comments

                Comment on this article