21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy of Evolvulus alsinoides (L.) L. on insulin and antioxidants activity in pancreas of streptozotocin induced diabetic rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          Diabetes mellitus (DM), a leading non communicable disease with multiple etiologies is considered as third greatest cause of death in all over the world. During DM, persistent hyperglycemia causes an increased production of free radicals via auto oxidation of glucose and non-enzymatic protein glycation which may lead to disruption of cellular functions and oxidative damage to membranes. The present study was designed to investigate the therapeutic effect of Evolvulus alsinoides on antioxidant activity in pancreas of experimental diabetes.

          Methods

          The antioxidant activities were done by using standard protocols. For histopathological analysis, the pancreatic tissues of all experimental groups were fixed with 10% formalin for 24 hrs then the samples were stained with haemotoxylin-eosin for the microscopic observation.

          Results

          Oral administration of plant extract for 45 days resulted in significant antioxidant activity, increases the insulin level and also inhibits lipid peroxidation in pancreas of streptozotocin induced diabetic rats. The histopathological studies showed the normal histology of pancreas after treatment with plant extract and glibenclamide. This study showed that the administration of Evolvulus alsinoides to streptozotocin induced diabetic rats improves the antioxidant activity and remodel the structure of pancreas due to the presence of secondary metabolites like phenols, flavonoids, alkaloids, steroids, terpenoids and glycosides in the ethanolic extract of plant material.

          Conclusion

          From the present study, it can be concluded that the plant extract effectively reduced the oxidative stress induced by streptozotocin and potentially increased the insulin level. Hence, it can be used in the management of diabetes mellitus.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Selenium: biochemical role as a component of glutathione peroxidase.

          When hemolyzates from erythrocytes of selenium-deficient rats were incubated in vitro in the presence of ascorbate or H(2)O(2), added glutathione failed to protect the hemoglobin from oxidative damage. This occurred because the erythrocytes were practically devoid of glutathione-peroxidase activity. Extensively purified preparations of glutathione peroxidase contained a large part of the (75)Se of erythrocytes labeled in vivo. Many of the nutritional effects of selenium can be explained by its role in glutathione peroxidase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver.

            Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver have been investigated. After perfusing the lung to remove contaminating blood, this organ was found to have an apparent concentration of glutathione (2mM) which is approx. 20% of that found in the liver. Both organs contain very low levels of glutathione disulfide. Neither phenobarbital nor methylcholanthrene had a significant effect on the levels of reduced glutathione in lung and liver. In addition, the activities of some glutathione-metabolizing enzymes--glutathione reductase and glutathione S-transferase activity assayed with four different substrates--were observed to be 5-to 60-fold lower in lung tissue than in the liver.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Redox regulation in the lens.

              F Lou (2003)
              The high content of glutathione (GSH) in the lens is believed to protect thiols in structural proteins and enzymes for proper biological functions. The lens has both biosynthetic and regenerating systems for GSH to maintain its large pool size. However, ageing lenses or lenses under oxidative stress show an extensively diminished size of GSH pool with some protein thiols being S-thiolated by oxidized non-protein thiols to form protein-thiol mixed disulfides, either as protein-S-S-glutathione (PSSG) or protein-S-S-cysteine (PSSC) or protein-S-S-gamma-glutamylcysteine. It was shown in an H(2)O(2)-induced cataract model that PSSG formation precedes a cascade of events before cataract formation, starting with protein disulfide crosslinks, protein solubility loss and high molecular weight aggregation. Furthermore, this early oxidative damage in protein thiols can be spontaneously reversed in H(2)O(2) pretreated lenses if the oxidant is removed in time. This dethiolation process appears to have mediated through a redox-regulating enzyme, thioltransferase (TTase), which is ubiquitously present in microbial, plant and animal tissues, including the lens. The GSH-dependent, low molecular weight (11.8 kDa) cytosolic enzyme plays an important role in oxidative defense and can modulate key metabolic enzymes in the glycolytic pathway. The enzyme repairs oxidatively damaged proteins/enzymes through its unique catalytic site with a vicinal cysteine moiety, which can specifically dethiolate protein-S-S-glutathione and restore protein free SH groups for proper enzymatic or protein functions. Most importantly, it has been demonstrated that thioltransferase has a remarkable resistance to oxidation (H(2)O(2)) in cultured human and rabbit lens epithelial cells under oxidative stress conditions when other oxidation defense systems of GSH peroxidase and GSH reductase are severely inactivated. A second repair enzyme, thioredoxin (TRx), which is NADPH-dependent, is widely found in many lower and higher life forms of life. It can dethiolate protein disulfides and thus is an extremely important regulator for redox homeostasis in the cells. Thioredoxin has been recently found in the lens and has been shown to participate in the repair process of oxidatively damaged lens proteins/enzymes. These two enzymes may work synergistically to regulate and repair thiols in lens proteins and enzymes, keeping a balanced redox potential to maintain the function of the lens.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Diabetes Metab Disord
                J Diabetes Metab Disord
                Journal of Diabetes and Metabolic Disorders
                BioMed Central
                2251-6581
                2013
                8 July 2013
                : 12
                : 39
                Affiliations
                [1 ]Department of Biochemistry, Karpagam University, Coimbatore 641 021, India
                [2 ]Hawasaa University, Hawasaa, Ethiopia
                Article
                2251-6581-12-39
                10.1186/2251-6581-12-39
                3710082
                23834750
                2ef37efc-db5d-4e0f-b8f2-72992609395c
                Copyright © 2013 Gomathi et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 April 2013
                : 5 July 2013
                Categories
                Research Article

                streptozotocin,evolvulus alsinoides,pancreas,antioxidant activity,histopathological analysis

                Comments

                Comment on this article