0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Octacosanol and health benefits: Biological functions and mechanisms of action

      , , ,
      Food Bioscience
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references177

          • Record: found
          • Abstract: found
          • Article: not found

          Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies

          Summary Background Uncertainties persist about the magnitude of associations of diabetes mellitus and fasting glucose concentration with risk of coronary heart disease and major stroke subtypes. We aimed to quantify these associations for a wide range of circumstances. Methods We undertook a meta-analysis of individual records of diabetes, fasting blood glucose concentration, and other risk factors in people without initial vascular disease from studies in the Emerging Risk Factors Collaboration. We combined within-study regressions that were adjusted for age, sex, smoking, systolic blood pressure, and body-mass index to calculate hazard ratios (HRs) for vascular disease. Findings Analyses included data for 698 782 people (52 765 non-fatal or fatal vascular outcomes; 8·49 million person-years at risk) from 102 prospective studies. Adjusted HRs with diabetes were: 2·00 (95% CI 1·83–2·19) for coronary heart disease; 2·27 (1·95–2·65) for ischaemic stroke; 1·56 (1·19–2·05) for haemorrhagic stroke; 1·84 (1·59–2·13) for unclassified stroke; and 1·73 (1·51–1·98) for the aggregate of other vascular deaths. HRs did not change appreciably after further adjustment for lipid, inflammatory, or renal markers. HRs for coronary heart disease were higher in women than in men, at 40–59 years than at 70 years and older, and with fatal than with non-fatal disease. At an adult population-wide prevalence of 10%, diabetes was estimated to account for 11% (10–12%) of vascular deaths. Fasting blood glucose concentration was non-linearly related to vascular risk, with no significant associations between 3·90 mmol/L and 5·59 mmol/L. Compared with fasting blood glucose concentrations of 3·90–5·59 mmol/L, HRs for coronary heart disease were: 1·07 (0·97–1·18) for lower than 3·90 mmol/L; 1·11 (1·04–1·18) for 5·60–6·09 mmol/L; and 1·17 (1·08–1·26) for 6·10–6·99 mmol/L. In people without a history of diabetes, information about fasting blood glucose concentration or impaired fasting glucose status did not significantly improve metrics of vascular disease prediction when added to information about several conventional risk factors. Interpretation Diabetes confers about a two-fold excess risk for a wide range of vascular diseases, independently from other conventional risk factors. In people without diabetes, fasting blood glucose concentration is modestly and non-linearly associated with risk of vascular disease. Funding British Heart Foundation, UK Medical Research Council, and Pfizer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Delivering nanomedicine to solid tumors.

            Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. While the enhanced permeability and retention effect has served as a key rationale for using nanoparticles to treat solid tumors, it does not enable uniform delivery of these particles to all regions of tumors in sufficient quantities. This heterogeneous distribution of therapeutics is a result of physiological barriers presented by the abnormal tumor vasculature and interstitial matrix. These barriers are likely to be responsible for the modest survival benefit offered by many FDA-approved nanotherapeutics and must be overcome for the promise of nanomedicine in patients to be realized. Here, we review these barriers to the delivery of cancer therapeutics and summarize strategies that have been developed to overcome these barriers. Finally, we discuss design considerations for optimizing the delivery of nanoparticles to tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of nanotechnology on drug delivery.

              Nanotechnology is the engineering and manufacturing of materials at the atomic and molecular scale. In its strictest definition from the National Nanotechnology Initiative, nanotechnology refers to structures roughly in the 1-100 nm size regime in at least one dimension. Despite this size restriction, nanotechnology commonly refers to structures that are up to several hundred nanometers in size and that are developed by top-down or bottom-up engineering of individual components. Herein, we focus on the application of nanotechnology to drug delivery and highlight several areas of opportunity where current and emerging nanotechnologies could enable entirely novel classes of therapeutics.
                Bookmark

                Author and article information

                Contributors
                Journal
                Food Bioscience
                Food Bioscience
                Elsevier BV
                22124292
                June 2022
                June 2022
                : 47
                : 101632
                Article
                10.1016/j.fbio.2022.101632
                2fa42a30-cca0-4dcb-80e0-43e93b2809c0
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article