Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Preclinical experimental models of drug metabolism and disposition in drug discovery and development

      , , ,
      Acta Pharmaceutica Sinica B
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane transporters in drug development.

          Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies.

            This review brings you up-to-date with the hepatocyte research on: 1) in vitro-in vivo correlations of metabolism and clearance; 2) CYP enzyme induction, regulation, and cross-talk using human hepatocytes and hepatocyte-like cell lines; 3) the function and regulation of hepatic transporters and models used to elucidate their role in drug clearance; 4) mechanisms and examples of idiosyncratic and intrinsic hepatotoxicity; and 5) alternative cell systems to primary human hepatocytes. We also report pharmaceutical perspectives of these topics and compare methods and interpretations for the drug development process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apixaban metabolism and pharmacokinetics after oral administration to humans.

              The metabolism and disposition of [(14)C]apixaban, an orally bioavailable, highly selective, and direct acting/reversible factor Xa inhibitor, was investigated in 10 healthy male subjects without (group 1, n=6) and with bile collection (group 2, n=4) after a single 20-mg oral dose. Urine, blood, and feces samples were collected from all subjects. Bile samples were also collected for 3 to 8 h after dosing from group 2 subjects. There were no serious adverse events or discontinuations due to adverse effects. In plasma, apixaban was the major circulating component and O-demethyl apixaban sulfate, a stable and water-soluble metabolite, was the significant metabolite. The exposure of apixaban (C(max) and area under the plasma concentration versus time curve) in subjects with bile collection was generally similar to that in subjects without bile collection. The administered dose was recovered in feces (group 1, 56.0%; group 2, 46.7%) and urine (group 1, 24.5%; group 2, 28.8%), with the parent drug representing approximately half of the recovered dose. Biliary excretion represented a minor elimination pathway (2.44% of the administered dose) from group 2 subjects within the limited collection period. Metabolic pathways identified for apixaban included O-demethylation, hydroxylation, and sulfation of hydroxylated O-demethyl apixaban. Thus, apixaban is an orally bioavailable inhibitor of factor Xa with elimination pathways that include metabolism and renal excretion.
                Bookmark

                Author and article information

                Journal
                Acta Pharmaceutica Sinica B
                Acta Pharmaceutica Sinica B
                Elsevier BV
                22113835
                December 2012
                December 2012
                : 2
                : 6
                : 549-561
                Article
                10.1016/j.apsb.2012.10.004
                301ff4e3-c562-4829-b681-62585baa9435
                © 2012

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article