64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computational methods in drug discovery

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

          Abstract

          Related collections

          Most cited references227

          • Record: found
          • Abstract: not found
          • Article: not found

          What is principal component analysis?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved protein-ligand docking using GOLD.

            The Chemscore function was implemented as a scoring function for the protein-ligand docking program GOLD, and its performance compared to the original Goldscore function and two consensus docking protocols, "Goldscore-CS" and "Chemscore-GS," in terms of docking accuracy, prediction of binding affinities, and speed. In the "Goldscore-CS" protocol, dockings produced with the Goldscore function are scored and ranked with the Chemscore function; in the "Chemscore-GS" protocol, dockings produced with the Chemscore function are scored and ranked with the Goldscore function. Comparisons were made for a "clean" set of 224 protein-ligand complexes, and for two subsets of this set, one for which the ligands are "drug-like," the other for which they are "fragment-like." For "drug-like" and "fragment-like" ligands, the docking accuracies obtained with Chemscore and Goldscore functions are similar. For larger ligands, Goldscore gives superior results. Docking with the Chemscore function is up to three times faster than docking with the Goldscore function. Both combined docking protocols give significant improvements in docking accuracy over the use of the Goldscore or Chemscore function alone. "Goldscore-CS" gives success rates of up to 81% (top-ranked GOLD solution within 2.0 A of the experimental binding mode) for the "clean list," but at the cost of long search times. For most virtual screening applications, "Chemscore-GS" seems optimal; search settings that give docking speeds of around 0.25-1.3 min/compound have success rates of about 78% for "drug-like" compounds and 85% for "fragment-like" compounds. In terms of producing binding energy estimates, the Goldscore function appears to perform better than the Chemscore function and the two consensus protocols, particularly for faster search settings. Even at docking speeds of around 1-2 min/compound, the Goldscore function predicts binding energies with a standard deviation of approximately 10.5 kJ/mol. Copyright 2003 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Protein 3D Structure Computed from Evolutionary Sequence Variation

              The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic variants in normal and disease genomes.
                Bookmark

                Author and article information

                Contributors
                Role: Guest Editor
                Journal
                Beilstein J Org Chem
                Beilstein J Org Chem
                Beilstein Journal of Organic Chemistry
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                1860-5397
                2016
                12 December 2016
                : 12
                : 2694-2718
                Affiliations
                [1 ]Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
                Article
                10.3762/bjoc.12.267
                5238551
                28144341
                3047dde7-0bf3-4f76-9005-84fe6346d025
                Copyright © 2016, Leelananda and Lindert; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: ( http://www.beilstein-journals.org/bjoc)

                History
                : 1 September 2016
                : 22 November 2016
                Categories
                Review
                Chemistry
                Organic Chemistry

                Organic & Biomolecular chemistry
                adme,computer-aided drug design,docking,free energy,high-throughput screening,lbdd,lead optimization,machine learning,pharmacophore,qsar,sbdd,scoring,target flexibility

                Comments

                Comment on this article