12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The loop connecting metal-binding domains 3 and 4 of ATP7B is a target of a kinase-mediated phosphorylation.

      Biochemistry
      Adenosine Triphosphatases, chemistry, metabolism, Animals, Binding Sites, Catalysis, Cation Transport Proteins, Cells, Cultured, Copper, Guanosine Triphosphate, Humans, Magnesium, Manganese, Models, Biological, Phosphorylation, Protein Kinases, Protein Structure, Tertiary, Recombinant Proteins, genetics, trans-Golgi Network

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cu-ATPase ATP7B (Wilson's disease protein) transports copper into the trans-Golgi network for biosynthetic incorporation into ceruloplasmin and sequesters excess copper to endocytic vesicles for further export out of the cell. The activity and intracellular location of ATP7B are regulated by copper levels; the trafficking of ATP7B between cellular compartments is coupled to changes in the level of protein phosphorylation. Neither the nature of the kinase(s) phosphorylating ATP7B nor the location of phosphorylation sites is known. We demonstrate that the membrane-bound ATP7B is phosphorylated by an ATP-dependent, GTP-independent kinase that can be either soluble or membrane-associated. Mg(2+) or Mn(2+) is necessary for kinase activity. We further show that the recombinant N-terminal domain of ATP7B (N-ATP7B) is a specific target for a kinase-mediated phosphorylation in vitro and in cells. Although exogenous addition of copper is not required for kinase activity, copper binding to N-ATP7B markedly alters the exposure of loops connecting the metal-binding subdomains (MBDs) to proteolysis and facilitates phosphorylation by 25-30%. MBD1-2 and MBD4-5 linkers become protected, while MBD2-3 and MBD3-4 regions remain exposed. A significant, 5-fold increase in the level of phosphorylation is also observed for the ATP7B variant that lacks the 29 kDa N-terminal fragment (mostly likely comprised of MBD1-3). Analysis of phosphorylated peptides by two-dimensional gel electrophoresis and mass spectrometry points to the loop connecting MBD3 and MBD4 as a region of phosphorylation. Altogether, the results suggest a mechanism in which kinase-mediated phosphorylation of ATP7B is controlled by a conformational state of N-ATP7B.

          Related collections

          Author and article information

          Comments

          Comment on this article