22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan

      , , , , ,
      Atmospheric Chemistry and Physics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> Organosulfates are important components of atmospheric organic aerosols, yet their structures, abundances, sources and formation processes are not adequately understood. This study presents the identification and quantitation of benzyl sulfate in atmospheric aerosols, which is the first confirmed atmospheric organosulfate with aromatic carbon backbone. Benzyl sulfate was identified and quantified in fine particulate matter (PM<sub>2.5</sub>) collected in Lahore, Pakistan, during 2007–2008. An authentic standard of benzyl sulfate was synthesized, standardized, and identified in atmospheric aerosols with quadrupole time-of-flight (Q-ToF) mass spectrometry (MS). Benzyl sulfate was quantified in aerosol samples using ultra performance liquid chromatography (UPLC) coupled to negative electrospray ionization triple quadrupole (TQ) MS. The highest benzyl sulfate concentrations were recorded in November and January 2007 (0.50 ± 0.11 ng m<sup>−3</sup>) whereas the lowest concentration was observed in July (0.05 ± 0.02 ng m<sup>−3</sup>). To evaluate matrix effects, benzyl sulfate concentrations were determined using external calibration and the method of standard addition; comparable concentrations were detected by the two methods, which ruled out significant matrix effects in benzyl sulfate quantitation. Three additional organosulfates with <i>m/z</i> 187, 201 and 215 were qualitatively identified as aromatic organosulfates with additional methyl substituents by high-resolution mass measurements and tandem MS. The observed aromatic organosulfates form a homologous series analogous to toluene, xylene, and trimethylbenzene, which are abundant anthropogenic volatile organic compounds (VOC), suggesting that aromatic organosulfates may be formed by secondary reactions. However, stronger statistical correlations of benzyl sulfate with combustion tracers (EC and levoglucosan) than with secondary tracers (SO<sub>4</sub><sup>2&amp;minus;</sup> and &amp;alpha;-pinene-derived nitrooxy organosulfates) suggest that aromatic organosulfates may be emitted from the combustion sources or their subsequent atmospheric processing. Further studies are needed to elucidate the sources and formation pathways of aromatic organosulfates in the atmosphere.</p>

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          Organic aerosol and global climate modelling: a review

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pollution and the planetary albedo

            S Twomey (1974)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Known and Unexplored Organic Constituents in the Earth's Atmosphere

                Bookmark

                Author and article information

                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2013
                May 14 2013
                : 13
                : 9
                : 4865-4875
                Article
                10.5194/acp-13-4865-2013
                306e6c45-e8f0-419a-b66f-0afb2ca5fe5e
                © 2013

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article