3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Coordination Chemistry of Bio-Relevant Ligands and Their Magnesium Complexes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The coordination chemistry of magnesium (Mg 2+) was extensively explored. More recently; magnesium; which plays a role in over 80% of metabolic functions and governs over 350 enzymatic processes; is becoming increasingly linked to chronic disease—predominantly due to magnesium deficiency (hypomagnesemia). Supplemental dietary magnesium utilizing biorelevant chelate ligands is a proven method for counteracting hypomagnesemia. However, the coordination chemistry of such bio-relevant magnesium complexes is yet to be extensively explored or elucidated. It is the aim of this review to comprehensively describe what is currently known about common bio-relevant magnesium complexes from the perspective of coordination chemistry.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.

          The scientific community now agrees that the rise in atmospheric CO(2), the most abundant green house gas, comes from anthropogenic sources such as the burning of fossil fuels. This atmospheric rise in CO(2) results in global climate change. Therefore methods for photochemically transforming CO(2) into a source of fuel could offer an attractive way to decrease atmospheric concentrations. One way to accomplish this conversion is through the light-driven reduction of carbon dioxide to methane (CH(4(g))) or methanol (CH(3)OH((l))) with electrons and protons derived from water. Existing infrastructure already supports the delivery of natural gas and liquid fuels, which makes these possible CO(2) reduction products particularly appealing. This Account focuses on molecular approaches to photochemical CO(2) reduction in homogeneous solution. The reduction of CO(2) by one electron to form CO(2)(*-) is highly unfavorable, having a formal reduction potential of -2.14 V vs SCE. Rapid reduction requires an overpotential of up to 0.6 V, due at least in part to the kinetic restrictions imposed by the structural difference between linear CO(2) and bent CO(2)(*-). An alternative and more favorable pathway is to reduce CO(2) though proton-assisted multiple-electron transfer. The development of catalysts, redox mediators, or both that efficiently drive these reactions remains an important and active area of research. We divide these reactions into two class types. In Type I photocatalysis, a molecular light absorber and a transition metal catalyst work in concert. We also consider a special case of Type 1 photocatalysis, where a saturated hydrocarbon links the catalyst and the light absorber in a supramolecular compound. In Type II photocatalysis, the light absorber and the catalyst are the same molecule. In these reactions, transition-metal coordination compounds often serve as catalysts because they can absorb a significant portion of the solar spectrum and can promote activation of small molecules. This Account discusses four classes of transition-metal catalysts: (A) metal tetraaza-macrocyclic compounds; (B) supramolecular complexes; (C) metalloporphyrins and related metallomacrocycles; (D) Re(CO)(3)(bpy)X-based compounds where bpy = 2,2'-bipyridine. Carbon monoxide and formate are the primary CO(2) reduction products, and we also propose bicarbonate/carbonate production. For comprehensiveness, we briefly discuss hydrogen formation, a common side reaction that occurs concurrently with CO(2) reduction, though the details of that process are beyond the scope of this Account. It is our hope that drawing attention both to current mechanistic hypotheses and to the areas that are poorly understood will stimulate research that could one day provide an efficient solution to this global problem.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Advances in molecular photocatalytic and electrocatalytic CO2 reduction

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Suboptimal magnesium status in the United States: are the health consequences underestimated?

              In comparison with calcium, magnesium is an "orphan nutrient" that has been studied considerably less heavily. Low magnesium intakes and blood levels have been associated with type 2 diabetes, metabolic syndrome, elevated C-reactive protein, hypertension, atherosclerotic vascular disease, sudden cardiac death, osteoporosis, migraine headache, asthma, and colon cancer. Almost half (48%) of the US population consumed less than the required amount of magnesium from food in 2005-2006, and the figure was down from 56% in 2001-2002. Surveys conducted over 30 years indicate rising calcium-to-magnesium food-intake ratios among adults and the elderly in the United States, excluding intake from supplements, which favor calcium over magnesium. The prevalence and incidence of type 2 diabetes in the United States increased sharply between 1994 and 2001 as the ratio of calcium-to-magnesium intake from food rose from 3.0. Dietary Reference Intakes determined by balance studies may be misleading if subjects have chronic latent magnesium deficiency but are assumed to be healthy. Cellular magnesium deficit, perhaps involving TRPM6/7 channels, elicits calcium-activated inflammatory cascades independent of injury or pathogens. Refining the magnesium requirements and understanding how low magnesium status and rising calcium-to-magnesium ratios influence the incidence of type 2 diabetes, metabolic syndrome, osteoporosis, and other inflammation-related disorders are research priorities. © 2012 International Life Sciences Institute.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                11 July 2020
                July 2020
                : 25
                : 14
                : 3172
                Affiliations
                Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA; drcase@ 123456syr.edu
                Author notes
                [* ]Correspondence: jazubiet@ 123456syr.edu (J.Z.); rpdoyle@ 123456syr.edu (R.P.D.)
                Author information
                https://orcid.org/0000-0001-6786-5656
                Article
                molecules-25-03172
                10.3390/molecules25143172
                7397051
                32664540
                30dd78d7-9236-419f-88f5-e4be985f269d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 June 2020
                : 08 July 2020
                Categories
                Review

                magnesium,chelates,coordination chemistry,hypomagnesemia,nutraceuticals

                Comments

                Comment on this article