20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyclooxygenase-2 in Endometriosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endometriosis (EMS) is the most common gynecological disease in women of reproductive age, and it is associated with chronic pelvic pain, dyspareunia and infertility. As a consequence of genetic, immune and environmental factors, endometriotic lesions have high cyclooxygenase (COX)-2 and COX-2-derived prostaglandin E 2 (PGE 2) biosynthesis compared with the normal endometrium. The transcription of the PTGS2 gene for COX-2 is associated with multiple intracellular signals, which converge to cause the activation of mitogen-activated protein kinases (MAPKs). COX-2 expression can be regulated by several factors, such as estrogen, hypoxia, proinflammatory cytokines, environmental pollutants, metabolites and metabolic enzymes, and platelets. High concentrations of COX-2 lead to high cell proliferation, a low level of apoptosis, high invasion, angiogenesis, EMS-related pain and infertility. COX-2-derived PGE 2 performs a crucial function in EMS development by binding to EP2 and EP4 receptors. These basic findings have contributed to COX-2-targeted treatment in EMS, including COX-2 inhibitors, hormone drugs and glycyrrhizin. In this review, we summarize the most recent basic research in detail and provide a short summary of COX-2-targeted treatment.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Cyclooxygenases 1 and 2.

          Cyclooxygenase (COX), first purified in 1976 and cloned in 1988, is the key enzyme in the synthesis of prostaglandins (PGs) from arachidonic acid. In 1991, several laboratories identified a product from a second gene with COX activity and called it COX-2. However, COX-2 was inducible, and the inducing stimuli included pro-inflammatory cytokines and growth factors, implying a role for COX-2 in both inflammation and control of cell growth. The two isoforms of COX are almost identical in structure but have important differences in substrate and inhibitor selectivity and in their intracellular locations. Protective PGs, which preserve the integrity of the stomach lining and maintain normal renal function in a compromised kidney, are synthesized by COX-1. In addition to the induction of COX-2 in inflammatory lesions, it is present constitutively in the brain and spinal cord, where it may be involved in nerve transmission, particularly that for pain and fever. PGs made by COX-2 are also important in ovulation and in the birth process. The discovery of COX-2 has made possible the design of drugs that reduce inflammation without removing the protective PGs in the stomach and kidney made by COX-1. These highly selective COX-2 inhibitors may not only be anti-inflammatory but may also be active in colon cancer and Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition.

            Nonsteroidal anti-inflammatory drugs (NSAIDs) represent one of the most highly utilized classes of pharmaceutical agents in medicine. All NSAIDs act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective drugs. These pharmaceutical agents have quickly become established as important therapeutic medications with potentially fewer side effects than traditional NSAIDs. Additionally, characterization of the two COX isozymes is allowing the discrimination of the roles each play in physiological processes such as homeostatic maintenance of the gastrointestinal tract, renal function, blood clotting, embryonic implantation, parturition, pain, and fever. Of particular importance has been the investigation of COX-1 and -2 isozymic functions in cancer, dysregulation of inflammation, and Alzheimer's disease. More recently, additional heterogeneity in COX-related proteins has been described, with the finding of variants of COX-1 and COX-2 enzymes. These variants may function in tissue-specific physiological and pathophysiological processes and may represent important new targets for drug therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression.

              Two cyclooxygenase isozymes, COX-1 and -2, are known to catalyze the rate-limiting step of prostaglandin synthesis and are the targets of nonsteroidal antiinflammatory drugs. Here we describe a third distinct COX isozyme, COX-3, as well as two smaller COX-1-derived proteins (partial COX-1 or PCOX-1 proteins). COX-3 and one of the PCOX-1 proteins (PCOX-1a) are made from the COX-1 gene but retain intron 1 in their mRNAs. PCOX-1 proteins additionally contain an in-frame deletion of exons 5-8 of the COX-1 mRNA. COX-3 and PCOX mRNAs are expressed in canine cerebral cortex and in lesser amounts in other tissues analyzed. In human, COX-3 mRNA is expressed as an approximately 5.2-kb transcript and is most abundant in cerebral cortex and heart. Intron 1 is conserved in length and in sequence in mammalian COX-1 genes. This intron contains an ORF that introduces an insertion of 30-34 aa, depending on the mammalian species, into the hydrophobic signal peptide that directs COX-1 into the lumen of the endoplasmic reticulum and nuclear envelope. COX-3 and PCOX-1a are expressed efficiently in insect cells as membrane-bound proteins. The signal peptide is not cleaved from either protein and both proteins are glycosylated. COX-3, but not PCOX-1a, possesses glycosylation-dependent cyclooxygenase activity. Comparison of canine COX-3 activity with murine COX-1 and -2 demonstrates that this enzyme is selectively inhibited by analgesic/antipyretic drugs such as acetaminophen, phenacetin, antipyrine, and dipyrone, and is potently inhibited by some nonsteroidal antiinflammatory drugs. Thus, inhibition of COX-3 could represent a primary central mechanism by which these drugs decrease pain and possibly fever.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2019
                23 October 2019
                : 15
                : 13
                : 2783-2797
                Affiliations
                [1 ]NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.
                [2 ]Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China.
                [3 ]Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China.
                [4 ]Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China.
                [5 ]Center for Human Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou 215008, People's Republic of China.
                [6 ]Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, People's Republic of China.
                Author notes
                ✉ Corresponding author: Ming-Qing Li, Email: mqli@ 123456fudan.edu.cn ; NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200080, People's Republic of China. Tel/Fax: +86 21 33189900.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv15p2783
                10.7150/ijbs.35128
                6909960
                31853218
                30ec0346-dd55-4702-96dd-63b3b95bb9bc
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 22 March 2019
                : 28 July 2019
                Categories
                Review

                Life sciences
                cox-2,pge2,endometriosis,pain,estrogen
                Life sciences
                cox-2, pge2, endometriosis, pain, estrogen

                Comments

                Comment on this article