0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global and local stiffening of ex vivo-perfused stented human thoracic aortas: A mock circulation study

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" id="d8450231e134">The effects of thoracic endovascular repair (TEVAR) on the biomechanical properties of aortic tissue have not been adequately studied. Understanding these features is important for the management of endograft-triggered complications of a biomechanical nature. This study aims to examine how stent-graft implantation affects the elastomechanical behavior of the aorta. Non-pathological human thoracic aortas (n=10) were subjected to long-standing perfusion (8h) within a mock circulation loop under physiological conditions. To quantify compliance and its mismatch in the test periods without and with a stent, the aortic pressure and the proximal cyclic circumferential displacement were measured. After perfusion, biaxial tension tests (stress-stretch) were carried out to examine the stiffness profiles between non-stented and stented tissue, followed by a histological assessment. Experimental evidence shows: (i) a significant reduction in aortic distensibility after TEVAR, indicating aortic stiffening and compliance mismatch, (ii) a stiffer behavior of the stented samples compared to the non-stented samples with an earlier entry into the nonlinear part of the stress-stretch curve and (iii) strut-induced histological remodeling of the aortic wall. The biomechanical and histological comparison of the non-stented and stented aortas provides new insights into the interaction between the stent-graft and the aortic wall. The knowledge gained could refine the stent-graft design to minimize the stent-induced impacts on the aortic wall and the resulting complications. STATEMENT OF SIGNIFICANCE: Stent-related cardiovascular complications occur the moment the stent-graft expands on the human aortic wall. Clinicians base their diagnosis on the anatomical morphology of CT scans while neglecting the endograft-triggered biomechanical events that compromise aortic compliance and wall mechanotransduction. Experimental replication of endovascular repair in cadaver aortas within a mock circulation loop may have a catalytic effect on biomechanical and histological findings without an ethical barrier. Demonstrating interactions between the stent and the wall can help clinicians make a broader diagnosis such as ECG-triggered oversizing and stent-graft characteristics based on patient-specific anatomical location and age. In addition, the results can be used to optimize towards more aortophilic stent grafts. </p>

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis.

            The purpose of this study was to calculate robust quantitative estimates of the predictive value of aortic pulse wave velocity (PWV) for future cardiovascular (CV) events and all-cause mortality by meta-analyses of longitudinal studies. Arterial stiffness is increasingly recognized as a surrogate end point for CV disease. We performed a meta-analysis of 17 longitudinal studies that evaluated aortic PWV and followed up 15,877 subjects for a mean of 7.7 years. The pooled relative risk (RR) of clinical events increased in a stepwise, linear-like fashion from the first to the third tertile of aortic PWV. The pooled RRs of total CV events, CV mortality, and all-cause mortality were 2.26 (95% confidence interval: 1.89 to 2.70, 14 studies), 2.02 (95% confidence interval: 1.68 to 2.42, 10 studies), and 1.90 (95% confidence interval: 1.61 to 2.24, 11 studies), respectively, for high versus low aortic PWV subjects. For total CV events and CV mortality, the RR was significantly higher in high baseline risk groups (coronary artery disease, renal disease, hypertension) compared with low-risk subjects (general population). An increase in aortic PWV by 1 m/s corresponded to an age-, sex-, and risk factor-adjusted risk increase of 14%, 15%, and 15% in total CV events, CV mortality, and all-cause mortality, respectively. An increase in aortic PWV by 1 SD was associated with respective increases of 47%, 47%, and 42%. Aortic stiffness expressed as aortic PWV is a strong predictor of future CV events and all-cause mortality. The predictive ability of arterial stiffness is higher in subjects with a higher baseline CV risk.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Editor's Choice - Management of Descending Thoracic Aorta Diseases: Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS).

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Acta Biomaterialia
                Acta Biomaterialia
                Elsevier BV
                17427061
                April 2023
                April 2023
                : 161
                : 170-183
                Article
                10.1016/j.actbio.2023.02.028
                36849029
                31386661-d405-4976-9361-bcbfbcbbf130
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article