47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Eltrombopag Added to Standard Immunosuppression for Aplastic Anemia

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acquired aplastic anemia results from immune-mediated destruction of bone marrow. Immunosuppressive therapies are effective, but reduced numbers of residual stem cells may limit their efficacy. In patients with aplastic anemia that was refractory to immunosuppression, eltrombopag, a synthetic thrombopoietin-receptor agonist, led to clinically significant increases in blood counts in almost half the patients. We combined standard immunosuppressive therapy with eltrombopag in previously untreated patients with severe aplastic anemia.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Current concepts in the pathophysiology and treatment of aplastic anemia.

          Aplastic anemia, an unusual hematologic disease, is the paradigm of the human bone marrow failure syndromes. Almost universally fatal just a few decades ago, aplastic anemia can now be cured or ameliorated by stem-cell transplantation or immunosuppressive drug therapy. The pathophysiology is immune mediated in most cases, with activated type 1 cytotoxic T cells implicated. The molecular basis of the aberrant immune response and deficiencies in hematopoietic cells is now being defined genetically; examples are telomere repair gene mutations in the target cells and dysregulated T-cell activation pathways. Immunosuppression with antithymocyte globulins and cyclosporine is effective at restoring blood-cell production in the majority of patients, but relapse and especially evolution of clonal hematologic diseases remain problematic. Allogeneic stem-cell transplant from histocompatible sibling donors is curative in the great majority of young patients with severe aplastic anemia; the major challenges are extending the benefits of transplantation to patients who are older or who lack family donors. Recent results with alternative sources of stem cells and a variety of conditioning regimens to achieve their engraftment have been promising, with survival in small pediatric case series rivaling conventional transplantation results.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice.

            The purification of primitive human hematopoietic stem cells has been impaired by the absence of repopulation assays. By using a stringent two-step strategy involving depletion of lineage-positive cells followed by fluorescence-activated cell sorting, we have purified a cell population that is highly enriched for cells capable of multilineage repopulation in nonobese diabetic/severe combined immunodeficient (NOD/SCID) recipients. These SCID-repopulating cells (SRCs) were exclusively found in a cell fraction that expressed high levels of CD34 and no CD38. Through limiting dilution analysis using Poisson statistics, we calculated a frequency of 1 SRC in 617 CD34(+) CD38(-) cells. The highly purified SRC were capable of extensive proliferation in NOD/SCID mice. Mice transplanted with 1 SRC (at limiting cell doses) were able to produce approximately 400, 000 progeny 6 weeks after the transplant. Detailed flow cytometric analysis of the marrow of highly engrafted mice demonstrated both lymphoid and myeloid differentiation, as well as the retention of a significant fraction of CD34(+) CD38(-) cells. These highly purified fractions should be useful for identification of the cellular and molecular mechanisms that regulate primitive human hematopoietic cells. Moreover, the ability to detect and purify primitive cells provides a means to develop conditions for maintaining and/or expanding these cells during in vitro culture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of interferon-γ on hematopoiesis.

              The proinflammatory cytokine interferon-γ (IFN-γ) is well known for its important role in innate and adaptive immunity against intracellular infections and for tumor control. Yet, it has become clear that IFN-γ also has a strong impact on bone marrow (BM) output during inflammation, as it affects the differentiation of most hematopoietic progenitor cells. Here, we review the impact of IFN-γ on hematopoiesis, including the function of hematopoietic stem cells (HSCs) and more downstream progenitors. We discuss which hematopoietic lineages are functionally modulated by IFN-γ and through which underlying molecular mechanism(s). We propose the novel concept that IFN-γ acts through upregulation of suppressor of cytokine signaling molecules, which impairs signaling of several cytokine receptors. IFN-γ has also gained clinical interest from different angles, and we discuss how chronic IFN-γ production can lead to the development of anemia and BM failure and how it is involved in malignant hematopoiesis. Overall, this review illustrates the wide-ranging effect of IFN-γ on the (patho-)physiological processes in the BM.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                April 20 2017
                April 20 2017
                : 376
                : 16
                : 1540-1550
                Article
                10.1056/NEJMoa1613878
                5548296
                28423296
                3140df78-d39c-4e05-afd7-1841ca601cde
                © 2017
                History

                Comments

                Comment on this article