34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decreased BDNF and TrkB mRNA expression in multiple cortical areas of patients with schizophrenia and mood disorders

      research-article
      1 , 2 , 3 , 4 , 5 , 1 , *
      Translational Psychiatry
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abnormalities in brain-derived neurotrophic factor (BDNF)/trkB signaling have been implicated in the etiology of schizophrenia and mood disorders. Patients with schizophrenia, bipolar disorder (BPD) and major depression (MDD) have reduced levels of neurotrophins in their brains when compared with normal unaffected individuals; however, only a few brain areas have been examined to date. Owing to the broad range of symptoms manifested in these disorders, we hypothesized that multiple associative areas of the neocortex may be implicated and that the degree of change in BDNF and trkB−TK+ mRNA expression and the cortical region or layers involved may vary according to Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnosis. We compared BDNF and trkB−TK+ mRNA levels across all layers of the prefrontal cortex (dorsolateral prefrontal cortex, DLPFC), orbital frontal cortex (OFC), anterior cingulate cortex (ACC), inferior temporal gyrus (ITG) and superior temporal gyrus (STG) in four groups: schizophrenia, BPD, MDD and unaffected controls ( n=60). BDNF mRNA levels were significantly decreased in layers IV and V of DLPFC in schizophrenia patients, in layer VI of ACC in schizophrenia and MDD and in layer VI of ITG in schizophrenia, BPD and MDD. BDNF mRNA levels were also significantly decreased in layer V and/or VI of STG in schizophrenia, BPD and MDD. TrkB−TK+ mRNA levels were only significantly decreased in the cortical layer VI of OFC in BPD. The shared and distinct patterns of neurotrophin transcript reductions, with some specific to each group, may compromise the function and plasticity of distinct cortical areas to various degrees in the different groups and contribute to the range and overlap of symptoms manifested across the diagnoses.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          A neurotrophic model for stress-related mood disorders.

          There is a growing body of evidence demonstrating that stress decreases the expression of brain-derived neurotrophic factor (BDNF) in limbic structures that control mood and that antidepressant treatment reverses or blocks the effects of stress. Decreased levels of BDNF, as well as other neurotrophic factors, could contribute to the atrophy of certain limbic structures, including the hippocampus and prefrontal cortex that has been observed in depressed subjects. Conversely, the neurotrophic actions of antidepressants could reverse neuronal atrophy and cell loss and thereby contribute to the therapeutic actions of these treatments. This review provides a critical examination of the neurotrophic hypothesis of depression that has evolved from this work, including analysis of preclinical cellular (adult neurogenesis) and behavioral models of depression and antidepressant actions, as well as clinical neuroimaging and postmortem studies. Although there are some limitations, the results of these studies are consistent with the hypothesis that decreased expression of BDNF and possibly other growth factors contributes to depression and that upregulation of BDNF plays a role in the actions of antidepressant treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.

            The influence of chronic electroconvulsive seizure (ECS) or antidepressant drug treatments on expression of brain-derived neurotrophic factor (BDNF) and its receptor, trkB, was examined by in situ hybridization and Northern blot. In frontal cortex, acute ECS increased BDNF mRNA approximately twofold, an effect significantly augmented by a prior course of chronic ECS treatment (10 d). In the hippocampus, the influence of chronic ECS varied between the major subfields. In the dentate gyrus granule cell layer, chronic ECS decreased the acute induction of BDNF and trkB mRNA by approximately 50%, but prolonged their expression: levels remained elevated two- to threefold 18 hr later after the last chronic ECS treatment, but returned to control 18 hr after acute ECS. In CA3 and CA1 pyramidal cell layers, chronic ECS significantly elevated the acute induction of BDNF, and tended to prolong the expression of BDNF and trkB mRNA. A similar effect was observed in layer 2 of the piriform cortex, where chronic ECS significantly increased the acute induction and prolonged the expression of BDNF and trkB mRNA. Chronic (21 d), but not acute (1 d), administration of several different antidepressant drugs, including tranylcypromine, sertraline, desipramine, or mianserin, significantly increased BDNF mRNA and all but mianserin increased trkB mRNA in hippocampus. In contrast, chronic administration of nonantidepressant psychotropic drugs, including morphine, cocaine, or haloperidol, did not increase levels of BDNF mRNA. Furthermore, chronic administration of ECS or antidepressant drugs completely blocked the down-regulation of BDNF mRNA in the hippocampus in response to restraint stress. The enhanced induction and prolonged expression of BDNF in response to chronic ECS and antidepressant drug treatments could promote neuronal survival, and protect neurons from the damaging effects of stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication.

              The cAMP signaling pathway, and its downstream neurotrophic factor BDNF, are major targets of antidepressant medications. Abnormalities in this pathway have previously been reported in postmortem brain of subjects with mood disorders. This study was designed to test whether the diagnosis of a mood disorder, or treatment with an antidepressant or mood stabilizer was associated with changes in hippocampal BDNF in postmortem brain. Frozen postmortem anterior hippocampus sections were obtained from the Stanley Foundation Neuropathology Consortium. Tissue from subjects with major depression, bipolar disorder, schizophrenia and nonpsychiatric control subjects were stained for BDNF using immunohistochemistry. Increased BDNF expression was found in dentate gyrus, hilus and supragranular regions in subjects treated with antidepressant medications at the time of death, compared with antidepressant-untreated subjects. Furthermore, there was a trend toward increased BDNF expression in hilar and supragranular regions in depressed subjects treated with antidepressants, compared with the subjects not on these medications at the time of death. These findings are consistent with recent studies measuring CREB levels in this same subject sample, and support current animal and cellular models of antidepressant function.
                Bookmark

                Author and article information

                Journal
                Transl Psychiatry
                Transl Psychiatry
                Translational Psychiatry
                Nature Publishing Group
                2158-3188
                May 2014
                06 May 2014
                1 May 2014
                : 4
                : 5
                : e389
                Affiliations
                [1 ]Stanley Medical Research Institute, Laboratory of Brain Research , Rockville, MD, USA
                [2 ]Trinity Washington University , NE Washington, DC, USA
                [3 ]Schizophrenia Research Institute, Sydney, NSW , Australia
                [4 ]Neuroscience Research Australia , Randwick, NSW, Australia
                [5 ]School of Psychiatry, University of New South Wales , Sydney, NSW, Australia
                Author notes
                [* ]Stanley Laboratory of Brain Research, 9800 Medical Center Drive , Rockville, MD 20850, USA. E-mail: websterm@ 123456stanleyresearch.org
                Article
                tp201426
                10.1038/tp.2014.26
                4035720
                24802307
                314a3eb1-0604-4d07-8571-c68aa7df736a
                Copyright © 2014 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 3.0 Unported License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/

                History
                : 28 February 2014
                : 09 March 2014
                Categories
                Original Article

                Clinical Psychology & Psychiatry
                Clinical Psychology & Psychiatry

                Comments

                Comment on this article