12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An essential role of high-molecular-weight kininogen in endotoxemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-molecular-weight kininogen (HK) is a plasma protein. Yang et al. show that HK binds LPS and supports endotoxemia. Blockade of their binding attenuates circulating LPS level. Therefore, HK is essential for endotoxemia and is a new target for LPS clearance and sepsis treatment.

          Abstract

          In this study, we show that mice lacking high-molecular-weight kininogen (HK) were resistant to lipopolysaccharide (LPS)-induced mortality and had significantly reduced circulating LPS levels. Replenishment of HK-deficient mice with human HK recovered the LPS levels and rendered the mice susceptible to LPS-induced mortality. Binding of HK to LPS occurred through the O-polysaccharide/core oligosaccharide, consistent with the ability to bind LPS from K. pneumoniae, P. aeruginosa, S. minnesota, and different E. coli strains. Binding of LPS induced plasma HK cleavage to the two-chain form (HKa, containing a heavy chain [HC] and a light chain [LC]) and bradykinin. Both HKa and the LC, but not the HC, could disaggregate LPS. The light chain bound LPS with high affinity ( K d = 1.52 × 10 −9 M) through a binding site in domain 5 (DHG15). A monoclonal antibody against D5 significantly reduced LPS-induced mortality and circulating LPS levels in wild-type mice. Thus, HK, as a major LPS carrier in circulation, plays an essential role in endotoxemia.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses.

          The activation of innate immune responses by nucleic acids is crucial to protective and pathological immunities and is mediated by the transmembrane Toll-like receptors (TLRs) and cytosolic receptors. However, it remains unknown whether a mechanism exists that integrates these nucleic-acid-sensing systems. Here we show that high-mobility group box (HMGB) proteins 1, 2 and 3 function as universal sentinels for nucleic acids. HMGBs bind to all immunogenic nucleic acids examined with a correlation between affinity and immunogenic potential. Hmgb1(-/-) and Hmgb2(-/-) mouse cells are defective in type-I interferon and inflammatory cytokine induction by DNA or RNA targeted to activate the cytosolic nucleic-acid-sensing receptors; cells in which the expression of all three HMGBs is suppressed show a more profound defect, accompanied by impaired activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-kappaB. The absence of HMGBs also severely impairs the activation of TLR3, TLR7 and TLR9 by their cognate nucleic acids. Our results therefore indicate a hierarchy in the nucleic-acid-mediated activation of immune responses, wherein the selective activation of nucleic-acid-sensing receptors is contingent on the more promiscuous sensing of nucleic acids by HMGBs. These findings may have implications for understanding the evolution of the innate immune system and for the treatment of immunological disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential role of MD-2 in LPS responsiveness and TLR4 distribution.

            Toll-like receptor 4 (TLR4) mediates lipopolysaccharide (LPS) signaling in a variety of cell types. MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro. We show here that MD-2(-/-) mice do not respond to LPS, do survive endotoxic shock but are susceptible to Salmonella typhimurium infection. We found that in MD-2(-/-) embryonic fibroblasts, TLR4 was not able to reach the plasma membrane and predominantly resided in the Golgi apparatus, whereas TLR4 was distributed at the leading edge surface of cells in wild-type embryonic fibroblasts. Thus, MD-2 is essential for correct intracellular distribution and LPS-recognition of TLR4.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Critical role for the NLRP3 inflammasome during acute lung injury.

              The inflammasome is a key factor in innate immunity and senses soluble pathogen and danger-associated molecular patterns as well as biological crystals (urate, cholesterol, etc.), resulting in expression of IL-1β and IL-18. Using a standard model of acute lung injury (ALI) in mice featuring airway instillation of LPS, ALI was dependent on availability of NLRP3 as well as caspase-1, which are known features of the NLRP3 inflammasome. The appearance of IL-1β, a product of NLRP3 inflammasome activation, was detected in bronchoalveolar lavage fluids (BALF) in a macrophage- and neutrophil-dependent manner. Neutrophil-derived extracellular histones appeared in the BALF during ALI and directly activated the NLRP3 inflammasome. Ab-mediated neutralization of histones significantly reduced IL-1β levels in BALF during ALI. Inflammasome activation by extracellular histones in LPS-primed macrophages required NLRP3 and caspase-1 as well as extrusion of K(+), increased intracellular Ca(2+) concentration, and generation of reactive oxygen species. NLRP3 and caspase-1 were also required for full extracellular histone presence during ALI, suggesting a positive feedback mechanism. Extracellular histone and IL-1β levels in BALF were also elevated in C5a-induced and IgG immune complex ALI models, suggesting a common inflammatory mechanism. These data indicate an interaction between extracellular histones and the NLRP3 inflammasome, resulting in ALI. Such findings suggest novel targets for treatment of ALI, for which there is currently no known efficacious drug.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                04 September 2017
                : 214
                : 9
                : 2649-2670
                Affiliations
                [1 ]Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
                [2 ]Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA
                [3 ]Department of Pathology and Laboratory Medicine, Rutgers–New Jersey Medical School, Newark, NJ
                Author notes
                Correspondence to Yi Wu: yiwu@ 123456temple.edu
                [*]

                A. Yang, Z. Xie, and B. Wang contributed equally to this paper.

                Author information
                http://orcid.org/0000-0002-8067-4771
                http://orcid.org/0000-0002-5116-9266
                Article
                20161900
                10.1084/jem.20161900
                5584120
                28794132
                314b84f8-f3b2-48fa-aad1-98c7a43a6581
                © 2017 Yang et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

                History
                : 10 November 2016
                : 25 May 2017
                : 07 July 2017
                Funding
                Funded by: Natural Science Foundation of China, DOI http://dx.doi.org/10.13039/501100001809;
                Award ID: 91539122
                Award ID: 30971491
                Award ID: 81301534
                Funded by: National Institutes of Health, DOI http://dx.doi.org/10.13039/100000002;
                Award ID: AR063290
                Award ID: AR057542
                Award ID: AR051713
                Funded by: Jiangsu Higher Education Institutions
                Categories
                Research Articles
                Article
                311

                Medicine
                Medicine

                Comments

                Comment on this article