12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically.

          ABSTRACT

          Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Fruiting body formation by Bacillus subtilis.

          Spore formation by the bacterium Bacillus subtilis has long been studied as a model for cellular differentiation, but predominantly as a single cell. When analyzed within the context of highly structured, surface-associated communities (biofilms), spore formation was discovered to have heretofore unsuspected spatial organization. Initially, motile cells differentiated into aligned chains of attached cells that eventually produced aerial structures, or fruiting bodies, that served as preferential sites for sporulation. Fruiting body formation depended on regulatory genes required early in sporulation and on genes evidently needed for exopolysaccharide and surfactin production. The formation of aerial structures was robust in natural isolates but not in laboratory strains, an indication that multicellularity has been lost during domestication of B. subtilis. Other microbial differentiation processes long thought to involve only single cells could display the spatial organization characteristic of multicellular organisms when studied with recent natural isolates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology

            Cellular processes often depend on interactions between proteins and the formation of macromolecular complexes. The impairment of such interactions can lead to deregulation of pathways resulting in disease states, and it is hence crucial to gain insights into the nature of macromolecular assemblies. Detailed structural knowledge about complexes and protein-protein interactions is growing, but experimentally determined three-dimensional multimeric assemblies are outnumbered by complexes supported by non-structural experimental evidence. Here, we aim to fill this gap by modeling multimeric structures by homology, only using amino acid sequences to infer the stoichiometry and the overall structure of the assembly. We ask which properties of proteins within a family can assist in the prediction of correct quaternary structure. Specifically, we introduce a description of protein-protein interface conservation as a function of evolutionary distance to reduce the noise in deep multiple sequence alignments. We also define a distance measure to structurally compare homologous multimeric protein complexes. This allows us to hierarchically cluster protein structures and quantify the diversity of alternative biological assemblies known today. We find that a combination of conservation scores, structural clustering, and classical interface descriptors, can improve the selection of homologous protein templates leading to reliable models of protein complexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis.

              With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today's single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                mBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                10 March 2020
                Mar-Apr 2020
                : 11
                : 2
                : e03122-19
                Affiliations
                [a ]SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
                [b ]Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
                National Institute of Child Health and Human Development (NICHD)
                Author notes
                Address correspondence to Patricia Bedrunka, patricia.bedrunka@ 123456synmikro.uni-marburg.de , or Peter L. Graumann, peter.graumann@ 123456synmikro.uni-marburg.de .

                Sandra Kunz and Anke Tribensky contributed equally to this work. Author order was determined both alphabetically and in order of increasing seniority.

                Article
                mBio03122-19
                10.1128/mBio.03122-19
                7064775
                32156823
                3163e2b8-bae3-46a6-ae21-c758f42bcb36
                Copyright © 2020 Kunz et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 3 December 2019
                : 21 January 2020
                Page count
                supplementary-material: 10, Figures: 8, Tables: 6, Equations: 0, References: 43, Pages: 22, Words: 14337
                Funding
                Funded by: Philipps Universitaet Marburg;
                Award ID: SYMIKRO
                Award Recipient :
                Funded by: Deutsche Forschungsgemeinschaft (DFG), https://doi.org/10.13039/501100001659;
                Award ID: SFB987
                Award Recipient : Award Recipient : Award Recipient : Award Recipient : Award Recipient :
                Categories
                Research Article
                Molecular Biology and Physiology
                Custom metadata
                March/April 2020

                Life sciences
                cyclic-di-gmp signaling,biofilm formation,bacillus subtilis,single-molecule dynamics,second messenger,signal transduction,single-molecule tracking

                Comments

                Comment on this article