16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thermal oxidation, which serves as a low-cost, effective and relatively simple/facile method, was used to modify a micro-structured titanium surface in ambient atmosphere at 450 °C for different time periods to improve in vitro and in vivo bioactivity. The surface morphology, crystallinity of the surface layers, chemical composition and chemical states were evaluated by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cell behaviours including cell adhesion, attachment, proliferation, and osteogenic differentiation were observed in vitro study. The ability of the titanium surface to promote osseointegration was evaluated in an in vivo animal model. Surface thermal oxidation on titanium implants maintained the microstructure and, thus, both slightly changed the nanoscale structure of titanium and enhanced the crystallinity of the titanium surface layer. Cells cultured on the three oxidized titanium surfaces grew well and exhibited better osteogenic activity than did the control samples. The in vivo bone-implant contact also showed enhanced osseointegration after several hours of oxidization. This heat-treated titanium enhanced the osteogenic differentiation activity of rBMMSCs and improved osseointegration in vivo, suggesting that surface thermal oxidation could potentially be used in clinical applications to improve bone-implant integration.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          On the mechanisms of biocompatibility.

          The manner in which a mutually acceptable co-existence of biomaterials and tissues is developed and sustained has been the focus of attention in biomaterials science for many years, and forms the foundation of the subject of biocompatibility. There are many ways in which materials and tissues can be brought into contact such that this co-existence may be compromised, and the search for biomaterials that are able to provide for the best performance in devices has been based upon the understanding of all the interactions within biocompatibility phenomena. Our understanding of the mechanisms of biocompatibility has been restricted whilst the focus of attention has been long-term implantable devices. In this paper, over 50 years of experience with such devices is analysed and it is shown that, in the vast majority of circumstances, the sole requirement for biocompatibility in a medical device intended for long-term contact with the tissues of the human body is that the material shall do no harm to those tissues, achieved through chemical and biological inertness. Rarely has an attempt to introduce biological activity into a biomaterial been clinically successful in these applications. This essay then turns its attention to the use of biomaterials in tissue engineering, sophisticated cell, drug and gene delivery systems and applications in biotechnology, and shows that here the need for specific and direct interactions between biomaterials and tissue components has become necessary, and with this a new paradigm for biocompatibility has emerged. It is believed that once the need for this change is recognised, so our understanding of the mechanisms of biocompatibility will markedly improve.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the nature of biomaterials.

            The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Physical cues of biomaterials guide stem cell differentiation fate.

                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 August 2016
                2016
                : 6
                : 31769
                Affiliations
                [1 ]Department of Prosthodontics, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, School of Medicine , 639 Zhizaoju Road, Shanghai 200011, China
                [2 ]Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology , 639 Zhizaoju Road, Shanghai 200011, China
                [3 ]State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
                [4 ]University of Chinese Academy of Sciences , Beijing 100049, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep31769
                10.1038/srep31769
                4992888
                27546196
                318f50d0-6737-4a27-a938-1a085b988fd8
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 01 March 2016
                : 27 July 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article