+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tetramethylpyrazine attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells through regulating apoptosis, autophagy and oxidative damage

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background: Bupivacaine (BUP) acts as a local anesthetic, which is extensively used for clinical patients but could generate neurotoxicity in neurons. Tetramethylpyrazine (TET) exhibits strong neuron protective effects against neurotoxicity. Hence, we investigate the effect of TET on BUP-induced neurotoxicity in SH-SY5Y cells.

          Methods: CCK-8 assay was used to detect cell proliferation in SH-SY5Y cells. In addition, Western blotting was used to examine Bax, Bcl-2, active caspase 3, LC3II, Beclin 1 and p-62 protein levels in cells. Moreover, ELISA assay was used to detect the levels of total glutathione (GS), superoxide dismutase (SOD) and malondialdehyde (MDA) in cells.

          Results: In this study, we found that TET attenuated the neurotoxicity of BUP on SH-SY5Y cells. Meanwhile, TET alleviated BUP-induced apoptosis in SH-SY5Y cell via decreasing the expressions of active caspase-3 and Bax and increasing the expression of Bcl-2. In addition, monodansylcadaverine staining assay and Western blotting results confirmed that TET induced autophagy in SH-SY5Y cells via increasing the LC3II/I and Beclin 1 levels. Furthermore, TET attenuated BUP-induced oxidative damage in SH-SY5Y cells via upregulation of the levels of total GS and SOD and downregulation of the level of MDA. Interesting, the protective effects of TET against BUP-induced neurotoxicity in SH-SY5Y cells were reversed by autophagy inhibitor 3-methyladenine (3MA).

          Conclusion: These data indicated that TET may play a neuroprotective role via inhibiting apoptosis and inducing autophagy in SH-SY5Y cells. Therefore, TET may be a potential agent for the treatment of human neurotoxicity induced by BUP.

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential

          Autophagy is a conserved homeostatic process active in all human cells and affecting a spectrum of diseases. Here we use a pharmaceutical screen to discover new mechanisms for activation of autophagy. We identify a subset of pharmaceuticals inducing autophagic flux with effects in diverse cellular systems modelling specific stages of several human diseases such as HIV transmission and hyperphosphorylated tau accumulation in Alzheimer's disease. One drug, flubendazole, is a potent inducer of autophagy initiation and flux by affecting acetylated and dynamic microtubules in a reciprocal way. Disruption of dynamic microtubules by flubendazole results in mTOR deactivation and dissociation from lysosomes leading to TFEB (transcription factor EB) nuclear translocation and activation of autophagy. By inducing microtubule acetylation, flubendazole activates JNK1 leading to Bcl-2 phosphorylation, causing release of Beclin1 from Bcl-2-Beclin1 complexes for autophagy induction, thus uncovering a new approach to inducing autophagic flux that may be applicable in disease treatment.
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroprotection by tetramethylpyrazine against ischemic brain injury in rats.

            In traditional Chinese medicine, Ligusticum wallichii Franchat (Chuan Xiong) and its active ingredient tetramethylpyrazine (TMP) have been used to treat cardiovascular diseases and to relieve various neurological symptoms such as ischemic deficits. However, scientific evidence related to their effectiveness or precise modes of neuroprotective action is largely unclear. In the current study, we elicited the neuroprotective mechanisms of TMP after focal cerebral ischemic/reperfusion (I/R) by common carotid arteries and middle cerebral artery occlusion model in rats. TMP was administrated 60 min before occlusion via intraperitoneal injection. TMP concentration-dependently exhibited significant neuroprotective effect against ischemic deficits by reduction of behavioral disturbance. Neuronal loss and brain infarction in the ischemic side of rats were markedly lowered by treatment with TMP. Cerebral I/R-induced internucleosomal DNA fragmentation, caspase-8, caspase-9, and caspase-3 activation, and cytochrome c release were reduced by TMP treatment. Western blot analysis revealed the down-regulation of Bcl-2 and Bcl-xL and the up-regulation of Bax and Bad by cerebral I/R insult. Among them, only the alteration in Bcl-xL expression was reversed by TMP treatment. Moreover, the activation of microglia and/or recruitment of inflammatory cells within the ischemic side and the consequent production of monocyte chemoattractant protein 1 (MCP-1) were suppressed by TMP pre-treatment. Our findings suggest that TMP might provide neuroprotection against ischemic brain injury, in part, through suppression of inflammatory reaction, reduction of neuronal apoptosis, and prevention of neuronal loss.
              • Record: found
              • Abstract: found
              • Article: not found

              Excitotoxicity effects of glutamate on human neuroblastoma SH-SY5Y cells via oxidative damage.

              To investigate the mechanisms of excitotoxic effects of glutamate on human neuroblastoma SH-SY5Y cells. SH-SY5Y cell viability was measured by MTT assay. Other damaged profile was detected by lactate dehydrogenase (LDH) release and by 4', 6-diamidino-2-phenylindole (DAPI) staining. The cytosolic calcium concentration was tested by calcium influx assay. The glutamate-induced oxidative stress was analyzed by cytosolic glutathione assay, superoxide dismutase (SOD) assay and extracellular malondialdehyde (MDA) assay. Glutamate treatment caused damage in SH-SY5Y cells, including the decrease of cell viability, the increase of LDH release and the alterations of morphological structures. Furthermore, the concentration of cytoplasmic calcium in SH-SY5Y cells was not changed within 20 min following glutamate treatment, while cytosolic calcium concentration significantly increased within 24 h after glutamate treatment, which could not be inhibited by MK801, an antagonist of NMDA receptors, or by LY341495, an antagonist of metabotropic glutamate receptors. On the other hand, oxidative damage was observed in SH-SY5Y cells treated with glutamate, including decreases in glutathione content and SOD activity, and elevation of MDA level, all of which could be alleviated by an antioxidant Tanshinone IIA (Tan IIA, a major active ingredient from a Chinese plant Salvia Miltiorrhiza Bge). Glutamate exerts toxicity in human neuroblastoma SH-SY5Y cells possibly through oxidative damage, not through calcium homeostasis destruction mediated by NMDA receptors.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                17 April 2019
                : 13
                : 1187-1196
                [1 ]Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong 250021, People’s Republic of China
                [2 ]Department of Anesthesiology, Qingyun County People’s Hospital , Dezhou 253700, Shandong Province, People’s Republic of China
                [3 ]Department of Ophthalmology, Qianfoshan Hospital Affiliated to Medical School of Shandong University , Jinan 250014, Shandong Province, People’s Republic of China
                Author notes
                Correspondence: Mengyuan ZhangDepartment of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University , No. 324 Jingwuweiqi Road, Jinan City250021, Shandong Province, People’s Republic of ChinaTel +8 605 316 788 6432Email Mengyuan_Zhang77@ 123456126.com
                © 2019 Wang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 6, References: 34, Pages: 10
                Original Research


                Comment on this article