6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Conditional inactivation of Foxc1 and Foxc2 in neural crest cells leads to cardiac abnormalities

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac neural crest cells (cNCCs) are required for normal heart development. cNCCs are a multipotent and migratory cell lineage that differentiates into multiple cell types. cNCCs migrate into the developing heart to contribute to the septation of the cardiac outflow tract (OFT). Foxc1 and Foxc2 are closely related members of the FOX ( F orkhead b o x ) transcription factor family and are expressed in cNCC during heart development. However, the precise role of Foxc1 and Foxc2 in cNCCs has yet to be fully described. We found that compound NCC-specific Foxc1;Foxc2 mutant embryos exhibited persistent truncus arteriosus (PTA), ventricular septal defects (VSDs), and thinning of the ventricular myocardium. Loss of Foxc1/c2 expression in cNCCs resulted in abnormal patterns of cNCC migration into the OFT without the formation of the aorticopulmonary septum. Further, loss of Foxc1 expression in cNCCs resulted in normal OFT development but abnormal ventricular septal formation. In contrast, loss of Foxc2 expression in NCCs led to no obvious cardiac abnormalities. Together, we provide evidence that Foxc1 and Foxc2 in cNCCs are cooperatively required for proper cNCC migration, the formation of the OFT septation, and the development of the ventricles. Our data also suggests that Foxc1 expression may play a larger role in ventricular development compared to Foxc2 .

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          A global double-fluorescent Cre reporter mouse.

          The Cre/loxP system has been used extensively for conditional mutagenesis in mice. Reporters of Cre activity are important for defining the spatial and temporal extent of Cre-mediated recombination. Here we describe mT/mG, a double-fluorescent Cre reporter mouse that expresses membrane-targeted tandem dimer Tomato (mT) prior to Cre-mediated excision and membrane-targeted green fluorescent protein (mG) after excision. We show that reporter expression is nearly ubiquitous, allowing visualization of fluorescent markers in live and fixed samples of all tissues examined. We further demonstrate that mG labeling is Cre-dependent, complementary to mT at single cell resolution, and distinguishable by fluorescence-activated cell sorting. Both membrane-targeted markers outline cell morphology, highlight membrane structures, and permit visualization of fine cellular processes. In addition to serving as a global Cre reporter, the mT/mG mouse may also be used as a tool for lineage tracing, transplantation studies, and analysis of cell morphology in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase.

            The ability to generate specific genetic modifications in mice provides a powerful approach to assess gene function. When genetic modifications have been generated in the germ line, however, the resulting phenotype often only reflects the first time a gene has an influence on - or is necessary for - a particular biological process. Therefore, systems allowing conditional genetic modification have been developed (for a review, see [1]); for example, inducible forms of the Cre recombinase from P1 phage have been generated that can catalyse intramolecular recombination between target recognition sequences (loxP sites) in response to ligand [2] [3] [4] [5]. Here, we assessed whether a tamoxifen-inducible form of Cre recombinase (Cre-ERTM) could be used to modify gene activity in the mouse embryo in utero. Using the enhancer of the Wnt1 gene to restrict the expression of Cre-ERTM to the embryonic neural tube, we found that a single injection of tamoxifen into pregnant mice induced Cre-mediated recombination within the embryonic central nervous system, thereby activating expression of a reporter gene. Induction was ligand dependent, rapid and efficient. The results demonstrate that tamoxifen-inducible recombination can be used to effectively modify gene function in the mouse embryo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis.

              The murine Foxc1/Mf1 and Foxc2/Mfh1 genes encode closely related forkhead/winged helix transcription factors with overlapping expression in the forming somites and head mesoderm and endothelial and mesenchymal cells of the developing heart and blood vessels. Embryos lacking either Foxc1 or Foxc2, and most compound heterozygotes, die pre- or perinatally with similar abnormal phenotypes, including defects in the axial skeleton and cardiovascular system. However, somites and major blood vessels do form. This suggested that the genes have similar, dose-dependent functions, and compensate for each other in the early development of the heart, blood vessels, and somites. In support of this hypothesis, we show here that compound Foxc1; Foxc2 homozygotes die earlier and with much more severe defects than single homozygotes alone. Significantly, they have profound abnormalities in the first and second branchial arches, and the early remodeling of blood vessels. Moreover, they show a complete absence of segmented paraxial mesoderm, including anterior somites. Analysis of compound homozygotes shows that Foxc1 and Foxc2 are both required for transcription in the anterior presomitic mesoderm of paraxis, Mesp1, Mesp2, Hes5, and Notch1, and for the formation of sharp boundaries of Dll1, Lfng, and ephrinB2 expression. We propose that the two genes interact with the Notch signaling pathway and are required for the prepatterning of anterior and posterior domains in the presumptive somites through a putative Notch/Delta/Mesp regulatory loop.
                Bookmark

                Author and article information

                Contributors
                Journal
                genesis
                genesis
                Wiley
                1526-954X
                1526-968X
                July 2020
                April 07 2020
                July 2020
                : 58
                : 7
                Affiliations
                [1 ]Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Department of MedicineNorthwestern University Chicago Illinois
                [2 ]Section of Molecular Craniofacial EmbryologyTokyo Medical and Dental University Graduate School of Medical and Dental Sciences Tokyo Japan
                Article
                10.1002/dvg.23364
                7363575
                32259372
                322ba288-a6f3-4552-b107-0659c27d5e20
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article