17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using a thermistor flowmeter with attached video camera for monitoring sponge excurrent speed and oscular behaviour

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A digital, four-channel thermistor flowmeter integrated with time-lapse cameras was developed as an experimental tool for measuring pumping rates in marine sponges, particularly those with small excurrent openings (oscula). Combining flowmeters with time-lapse imagery yielded valuable insights into the contractile behaviour of oscula in Cliona orientalis. Osculum cross-sectional area (OSA) was positively correlated to measured excurrent speeds (ES), indicating that sponge pumping and osculum contraction are coordinated behaviours. Both OSA and ES were positively correlated to pumping rate ( Q). Diel trends in pumping activity and osculum contraction were also observed, with sponges increasing their pumping activity to peak at midday and decreasing pumping and contracting oscula at night. Short-term elevation of the suspended sediment concentration (SSC) within the seawater initially decreased pumping rates by up to 90%, ultimately resulting in closure of the oscula and cessation of pumping.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surviving in a marine desert: the sponge loop retains resources within coral reefs.

            Ever since Darwin's early descriptions of coral reefs, scientists have debated how one of the world's most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is transferred to higher trophic levels. Here we show that sponges make DOM available to fauna by rapidly expelling filter cells as detritus that is subsequently consumed by reef fauna. This "sponge loop" was confirmed in aquarium and in situ food web experiments, using (13)C- and (15)N-enriched DOM. The DOM-sponge-fauna pathway explains why biological hot spots such as coral reefs persist in oligotrophic seas--the reef's paradox--and has implications for reef ecosystem functioning and conservation strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Could some coral reefs become sponge reefs as our climate changes?

              Coral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end-Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge-dominated period far surpasses that of alternative stable-ecosystem or phase-shift states reported on modern day coral reefs and, as such, a shift to sponge-dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral- to sponge-dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature and pH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning. © 2013 John Wiley & Sons Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                13 December 2016
                2016
                : 4
                : e2761
                Affiliations
                [1 ]Centre for Microscopy, Characterisation and Analysis, School of Plant Biology, and Oceans Institute, University of Western Australia , Crawley, WA, Australia
                [2 ]Western Australian Marine Science Institution , Crawley, WA, Australia
                [3 ]Australian Institute of Marine Science , Townsville, QLD, Australia
                Article
                2761
                10.7717/peerj.2761
                5157188
                32515e2d-5273-4e58-a480-7ef25b3233e6
                ©2016 Strehlow et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 15 June 2016
                : 5 November 2016
                Funding
                Funded by: Western Australian Marine Science Institution (WAMSI) Dredging Science Node
                Funded by: Australian Research Council Future Fellowship
                Award ID: FT120100480
                This research was funded by the Western Australian Marine Science Institution (WAMSI) as part of the WAMSI Dredging Science Node, and made possible through investment from Chevron Australia, Woodside Energy Limited, BHP Billiton as environmental offsets and by co-investment from the WAMSI Joint Venture partners. The views expressed herein are those of the authors and not necessarily those of WAMSI. NSW was funded by an Australian Research Council Future Fellowship FT120100480. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Animal Behavior
                Marine Biology

                flowmeter,sponge,thermistor,pumping,behaviour,contraction
                flowmeter, sponge, thermistor, pumping, behaviour, contraction

                Comments

                Comment on this article