4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Zinc titanate nanoarrays with superior optoelectrochemical properties for chemical sensing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this report, the gas sensing performance of zinc titanate (ZnTiO3) nanoarrays (NAs) synthesized by coating hydrothermally formed zinc oxide (ZnO) NAs with TiO2 using low-temperature chemical vapor deposition is presented. By controlling the annealing temperature, diffusion of ZnO into TiO2 forms a mixed oxide of ZnTiO3 NAs. The uniformity and the electrical properties of ZnTiO3 NAs made them ideal for light-activated acetone gas sensing applications for which such materials are not well studied. The acetone sensing performance of the ZnTiO3 NAs is tested by biasing the sensor with voltages from 0.1 to 9 V dc in an amperometric mode. An increase in the applied bias was found to increase the sensitivity of the device toward acetone under photoinduced and nonphotoinduced (dark) conditions. When illuminated with 365 nm UV light, the sensitivity was observed to increase by 3.4 times toward 12.5 ppm acetone at 350 °C with an applied bias of 9 V, as compared to dark conditions. The sensor was also observed to have significantly reduced the adsorption time, desorption time, and limit of detection (LoD) when excited by the light source. For example, LoD of the sensor in the dark and under UV light at 350 °C with a 9 V bias is found to be 80 and 10 ppb, respectively. The described approach also enabled acetone sensing at an operating temperature down to 45 °C with a repeatability of >99% and a LoD of 90 ppb when operated under light, thus indicating that the ZnTiO3 NAs are a promising material for low concentration acetone gas sensing applications.

          Related collections

          Author and article information

          Journal
          ACS Applied Materials & Interfaces
          ACS Appl. Mater. Interfaces
          American Chemical Society (ACS)
          1944-8244
          1944-8252
          July 24 2019
          July 24 2019
          Article
          10.1021/acsami.9b08704
          31339291
          329d6b1d-06e4-465b-acb5-984d6648299b
          © 2019
          History

          Comments

          Comment on this article