Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correction: A Risk Function for Behavioral Disruption of Blainville’s Beaked Whales ( Mesoplodon densirostris) from Mid-Frequency Active Sonar

      correction
      The PLOS ONE Staff
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is an error in Equation 4. Please see the corrected Equation 4 here. (4) There is an error in the legend for Figure 2. Please see the complete, corrected Figure 2 here. 10.1371/journal.pone.0085064.g002 Figure 2 The probability of disturbance (Drms) as a function of sonar RLrms . The GAM fit to the recorded data is shown in red with the bootstrap mean shown by the green with the point-wise 95% confidence limits indicated by dotted lines from the bootstrap. The parametric GLM approximation is shown in black. There is a.5 probability of disturbance at a RLrms of 149.5 dB; this is indicated in blue.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Risk Function for Behavioral Disruption of Blainville’s Beaked Whales (Mesoplodon densirostris) from Mid-Frequency Active Sonar

          There is increasing concern about the potential effects of noise pollution on marine life in the world’s oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville’s beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville’s beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville’s beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.
            Bookmark

            Author and article information

            Journal
            PLoS One
            PLoS ONE
            plos
            plosone
            PLoS ONE
            Public Library of Science (San Francisco, USA )
            1932-6203
            2014
            22 December 2014
            : 9
            : 12
            : e116555
            Article
            PONE-D-14-55677
            10.1371/journal.pone.0116555
            4274117
            25531646
            32a10da7-4012-4ff2-8fc9-f2bed208a397
            Copyright @ 2014

            This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

            History
            Page count
            Pages: 1
            Categories
            Correction

            Uncategorized
            Uncategorized

            Comments

            Comment on this article