14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Erythropoietin (EPO) is a tissue-protective cytokine preventing vascular spasm, apoptosis, and inflammatory responses. Although best known for its role in hematopoietic lineages, EPO also affects other tissues, including those of the nervous system. Enthusiasm for recombinant human erythropoietin (rhEPO) as a potential neuroprotective therapeutic must be tempered, however, by the knowledge it also enlarges circulating red cell mass and increases platelet aggregability. Here we examined whether erythropoietic and tissue-protective activities of rhEPO might be dissociated by a variation of the molecule. We demonstrate that asialoerythropoietin (asialoEPO), generated by total enzymatic desialylation of rhEPO, possesses a very short plasma half-life and is fully neuroprotective. In marked contrast with rhEPO, this molecule at doses and frequencies at which rhEPO exhibited erythropoiesis, did not increase the hematocrit of mice or rats. AsialoEPO appeared promptly within the cerebrospinal fluid after i.v. administration; intravenously administered radioiodine-labeled asialoEPO bound to neurons within the hippocampus and cortex in a pattern corresponding to the distribution of the EPO receptor. Most importantly, asialoEPO exhibits a broad spectrum of neuroprotective activities, as demonstrated in models of cerebral ischemia, spinal cord compression, and sciatic nerve crush. These data suggest that nonerythropoietic variants of rhEPO can cross the blood-brain barrier and provide neuroprotection.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection.

          Injury reproducibility is an important characteristic of experimental models of spinal cord injuries (SCI) because it limits the variability in locomotor and anatomical outcome measures. Recently, a more sensitive locomotor rating scale, the Basso, Beattie, and Bresnahan scale (BBB), was developed but had not been tested on rats with severe SCI complete transection. Rats had a 10-g rod dropped from heights of 6.25, 12.5, 25, and 50 mm onto the exposed cord at Tl 0 using the NYU device. A subset of rats with 25 and 50 mm SCI had subsequent spinal cord transection (SCI + TX) and were compared to rats with transection only (TX) in order to ascertain the dependence of recovery on descending systems. After 7-9 weeks of locomotor testing, the percentage of white matter measured from myelin-stained cross sections through the lesion center was significantly different between all the groups with the exception of 12.5 vs 25 mm and 25 vs 50 mm groups. Locomotor recovery was greatest for the 6.25-mm group and least for the 50-mm group and was correlated positively to the amount of tissue sparing at the lesion center (p 0.05). Thus, spared descending systems appear to modify segmental systems which produce greater behavioral improvements than isolated cord systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades.

            Erythropoietin, a kidney cytokine regulating haematopoiesis (the production of blood cells), is also produced in the brain after oxidative or nitrosative stress. The transcription factor hypoxia-inducible factor-1 (HIF-1) upregulates EPO following hypoxic stimuli. Here we show that preconditioning with EPO protects neurons in models of ischaemic and degenerative damage due to excitotoxins and consequent generation of free radicals, including nitric oxide (NO). Activation of neuronal EPO receptors (EPORs) prevents apoptosis induced by NMDA (N-methyl-d-aspartate) or NO by triggering cross-talk between the signalling pathways of Janus kinase-2 (Jak2) and nuclear factor-kappaB (NF-kappaB). We show that EPOR-mediated activation of Jak2 leads to phosphorylation of the inhibitor of NF-kappaB (IkappaB), subsequent nuclear translocation of the transcription factor NF-kappaB, and NF-kappaB-dependent transcription of neuroprotective genes. Transfection of cerebrocortical neurons with a dominant interfering form of Jak2 or an IkappaBalpha super-repressor blocks EPO-mediated prevention of neuronal apoptosis. Thus neuronal EPORs activate a neuroprotective pathway that is distinct from previously well characterized Jak and NF-kappaB functions. Moreover, this EPO effect may underlie neuroprotection mediated by hypoxic-ischaemic preconditioning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A potential role for erythropoietin in focal permanent cerebral ischemia in mice.

              The present study describes, for the first time, a temporal and spatial cellular expression of erythropoietin (Epo) and Epo receptor (Epo-R) with the evolution of a cerebral infarct after focal permanent ischemia in mice. In addition to a basal expression of Epo in neurons and astrocytes, a postischemic Epo expression has been localized specifically to endothelial cells (1 day), microglia/macrophage-like cells (3 days), and reactive astrocytes (7 days after occlusion). Under these conditions, the Epo-R expression always precedes that of Epo for each cell type. These results support the hypothesis that there is a continuous formation of Epo, with its corresponding receptor, during the active evolution of a focal cerebral infarct and that the Epo/Epo-R system might be implicated in the processes of neuroprotection and restructuring (such as angiogenesis and gliosis) after ischemia. To support this hypothesis, a significant reduction in infarct volume (47%; P < 0.0002) was found in mice treated with recombinant Epo 24 hours before induction of cerebral ischemia. Based on the above, we propose that the Epo/Epo-R system is an endogenous mechanism that protects the brain against damages consequent to a reduction in blood flow, a mechanism that can be amplified by the intracerebroventricular application of exogenous recombinant Epo.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 27 2003
                May 13 2003
                May 27 2003
                : 100
                : 11
                : 6741-6746
                Article
                10.1073/pnas.1031753100
                164517
                12746497
                32ac14f2-e311-473f-8e8c-cf6e4deff04b
                © 2003
                History

                Comments

                Comment on this article