12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biological Networks for Predicting Chemical Hepatocarcinogenicity Using Gene Expression Data from Treated Mice and Relevance across Human and Rat Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Several groups have employed genomic data from subchronic chemical toxicity studies in rodents (90 days) to derive gene-centric predictors of chronic toxicity and carcinogenicity. Genes are annotated to belong to biological processes or molecular pathways that are mechanistically well understood and are described in public databases.

          Objectives

          To develop a molecular pathway-based prediction model of long term hepatocarcinogenicity using 90-day gene expression data and to evaluate the performance of this model with respect to both intra-species, dose-dependent and cross-species predictions.

          Methods

          Genome-wide hepatic mRNA expression was retrospectively measured in B6C3F1 mice following subchronic exposure to twenty-six (26) chemicals (10 were positive, 2 equivocal and 14 negative for liver tumors) previously studied by the US National Toxicology Program. Using these data, a pathway-based predictor model for long-term liver cancer risk was derived using random forests. The prediction model was independently validated on test sets associated with liver cancer risk obtained from mice, rats and humans.

          Results

          Using 5-fold cross validation, the developed prediction model had reasonable predictive performance with the area under receiver-operator curve (AUC) equal to 0.66. The developed prediction model was then used to extrapolate the results to data associated with rat and human liver cancer. The extrapolated model worked well for both extrapolated species (AUC value of 0.74 for rats and 0.91 for humans). The prediction models implied a balanced interplay between all pathway responses leading to carcinogenicity predictions.

          Conclusions

          Pathway-based prediction models estimated from sub-chronic data hold promise for predicting long-term carcinogenicity and also for its ability to extrapolate results across multiple species.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cluster analysis and display of genome-wide expression patterns.

            A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The genetic association database.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                30 May 2013
                : 8
                : 5
                : e63308
                Affiliations
                [1 ]Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California, United States of America
                [2 ]The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, United States of America
                [3 ]Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
                [4 ]National Center for Environmental Health and Agency for Toxic Substances and Disease Registry, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                IIT Research Institute, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RST RT CJP. Performed the experiments: RST RT. Analyzed the data: RT RST SSA CJP. Wrote the paper: RT RST SSA CJP.

                Article
                PONE-D-12-13699
                10.1371/journal.pone.0063308
                3667849
                23737943
                32ea1016-f35e-44b3-bcbb-12416c0e371c
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 11 May 2012
                : 4 April 2013
                Page count
                Pages: 10
                Funding
                This research was supported [in part] by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences. The mouse studies and associated microarray analyses were supported by a grant to The Hamner Institutes from the American Chemistry Council's Long-Range Research Initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Microarrays
                Systems Biology
                Genomics
                Genome Expression Analysis
                Model Organisms
                Animal Models
                Mouse
                Rat
                Toxicology
                Predictive Toxicology
                Toxic Agents
                Mathematics
                Statistics
                Biostatistics
                Decision Theory
                Statistical Methods

                Uncategorized
                Uncategorized

                Comments

                Comment on this article