23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Acute myeloid leukemia: 2019 update on risk-stratification and management

      1
      American Journal of Hematology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Reduced mortality after allogeneic hematopoietic-cell transplantation.

          Over the past decade, advances have been made in the care of patients undergoing transplantation. We conducted a study to determine whether these advances have improved the outcomes of transplantation. We analyzed overall mortality, mortality not preceded by relapse, recurrent malignant conditions, and the frequency and severity of major complications of transplantation, including graft-versus-host disease (GVHD) and hepatic, renal, pulmonary, and infectious complications, among 1418 patients who received their first allogeneic transplants at our center in Seattle in the period from 1993 through 1997 and among 1148 patients who received their first allogeneic transplants in the period from 2003 through 2007. Components of the Pretransplant Assessment of Mortality (PAM) score were used in regression models to adjust for the severity of illness at the time of transplantation. In the 2003-2007 period, as compared with the 1993-1997 period, we observed significant decreases in mortality not preceded by relapse, both at day 200 (by 60%) and overall (by 52%), the rate of relapse or progression of a malignant condition (by 21%), and overall mortality (by 41%), after adjustment for components of the PAM score. The results were similar when the analyses were limited to patients who received myeloablative conditioning therapy. We also found significant decreases in the risk of severe GVHD; disease caused by viral, bacterial, and fungal infections; and damage to the liver, kidneys, and lungs. We found a substantial reduction in the hazard of death related to allogeneic hematopoietic-cell transplantation, as well as increased long-term survival, over the past decade. Improved outcomes appear to be related to reductions in organ damage, infection, and severe acute GVHD. (Funded by the National Institutes of Health.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute myeloid leukemia ontogeny is defined by distinct somatic mutations.

            Acute myeloid leukemia (AML) can develop after an antecedent myeloid malignancy (secondary AML [s-AML]), after leukemogenic therapy (therapy-related AML [t-AML]), or without an identifiable prodrome or known exposure (de novo AML). The genetic basis of these distinct pathways of AML development has not been determined. We performed targeted mutational analysis of 194 patients with rigorously defined s-AML or t-AML and 105 unselected AML patients. The presence of a mutation in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2 was >95% specific for the diagnosis of s-AML. Analysis of serial samples from individual patients revealed that these mutations occur early in leukemogenesis and often persist in clonal remissions. In t-AML and elderly de novo AML populations, these alterations define a distinct genetic subtype that shares clinicopathologic properties with clinically confirmed s-AML and highlights a subset of patients with worse clinical outcomes, including a lower complete remission rate, more frequent reinduction, and decreased event-free survival. This trial was registered at www.clinicaltrials.gov as #NCT00715637.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Assessment of Minimal Residual Disease in Standard-Risk AML

              Despite the molecular heterogeneity of standard-risk acute myeloid leukemia (AML), treatment decisions are based on a limited number of molecular genetic markers and morphology-based assessment of remission. Sensitive detection of a leukemia-specific marker (e.g., a mutation in the gene encoding nucleophosmin [NPM1]) could improve prognostication by identifying submicroscopic disease during remission.
                Bookmark

                Author and article information

                Journal
                American Journal of Hematology
                Am J Hematol
                Wiley
                03618609
                October 2018
                October 2018
                October 16 2018
                : 93
                : 10
                : 1267-1291
                Affiliations
                [1 ]Division of Hematology, Clinical Research Division; Fred Hutchinson Cancer Research Center, University of Washington and Member; Seattle Washington
                Article
                10.1002/ajh.25214
                30328165
                32eb7430-cca1-4600-b390-c53cdf82698c
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article