8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional Profiling of Immune-Related Genes in Leishmania infantum-Infected Mice: Identification of Potential Biomarkers of Infection and Progression of Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leishmania spp. is a protozoan parasite that affects millions of people around the world. At present, there is no effective vaccine to prevent leishmaniases in humans. A major limitation in vaccine development is the lack of precise understanding of the particular immunological mechanisms that allow parasite survival in the host. The parasite-host cell interaction induces dramatic changes in transcriptome patterns in both organisms, therefore, a detailed analysis of gene expression in infected tissues will contribute to the evaluation of drug and vaccine candidates, the identification of potential biomarkers, and the understanding of the immunological pathways that lead to protection or progression of disease. In this large-scale analysis, differential expression of 112 immune-related genes has been analyzed using high-throughput qPCR in spleens of infected and naïve Balb/c mice at four different time points. This analysis revealed that early response against Leishmania infection is characterized by the upregulation of Th1 markers and M1-macrophage activation molecules such as Ifng, Stat1, Cxcl9, Cxcl10, Ccr5, Cxcr3, Xcl1, and Ccl3. This activation doesn't protect spleen from infection, since parasitic burden rises along time. This marked difference in gene expression between infected and control mice disappears during intermediate stages of infection, probably related to the strong anti-inflammatory and immunosuppresory signals that are activated early upon infection ( Ctla4) or remain activated throughout the experiment ( Il18bp). The overexpression of these Th1/M1 markers is restored later in the chronic phase (8 wpi), suggesting the generation of a classical “protective response” against leishmaniasis. Nonetheless, the parasitic burden rockets at this timepoint. This apparent contradiction can be explained by the generation of a regulatory immune response characterized by overexpression of Ifng, Tnfa, Il10, and downregulation Il4 that counteracts the Th1/M1 response. This large pool of data was also used to identify potential biomarkers of infection and parasitic burden in spleen, on the bases of two different regression models. Given the results, gene expression signature analysis appears as a useful tool to identify mechanisms involved in disease outcome and to establish a rational approach for the identification of potential biomarkers useful for monitoring disease progression, new therapies or vaccine development.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          CXCR3 in T cell function.

          CXCR3 is a chemokine receptor that is highly expressed on effector T cells and plays an important role in T cell trafficking and function. CXCR3 is rapidly induced on naïve cells following activation and preferentially remains highly expressed on Th1-type CD4(+) T cells and effector CD8(+) T cells. CXCR3 is activated by three interferon-inducible ligands CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-TAC). Early studies demonstrated a role for CXCR3 in the trafficking of Th1 and CD8 T cells to peripheral sites of Th1-type inflammation and the establishment of a Th1 amplification loop mediated by IFNγ and the IFNγ-inducible CXCR3 ligands. More recent studies have also suggested that CXCR3 plays a role in the migration of T cells in the microenvironment of the peripheral tissue and lymphoid compartment, facilitating the interaction of T cells with antigen presenting cells leading to the generation of effector and memory cells. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The origins, function, and regulation of T follicular helper cells

            The generation of high-affinity antibodies (Abs) plays a critical role in the neutralization and clearance of pathogens and subsequent host survival after natural infection with a variety of microorganisms. Most currently available vaccines rely on the induction of long-lived protective humoral immune responses by memory B cells and plasma cells, underscoring the importance of Abs in host protection. Ab responses against most antigens (Ags) require interactions between B cells and CD4+ T helper cells, and it is now well recognized that T follicular helper cells (Tfh) specialize in providing cognate help to B cells and are fundamentally required for the generation of T cell–dependent B cell responses. Perturbations in the development and/or function of Tfh cells can manifest as immunopathologies, such as immunodeficiency, autoimmunity, and malignancy. Unraveling the cellular and molecular requirements underlying Tfh cell formation and maintenance will help to identify molecules that could be targeted for the treatment of immunological diseases that are characterized by insufficient or excessive Ab responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R.

              IL-23 is a heterodimeric cytokine composed of the IL-12p40 "soluble receptor" subunit and a novel cytokine-like subunit related to IL-12p35, termed p19. Human and mouse IL-23 exhibit some activities similar to IL-12, but differ in their capacities to stimulate particular populations of memory T cells. Like IL-12, IL-23 binds to the IL-12R subunit IL-12Rbeta1. However, it does not use IL-12Rbeta2. In this study, we identify a novel member of the hemopoietin receptor family as a subunit of the receptor for IL-23, "IL-23R." IL-23R pairs with IL-12Rbeta1 to confer IL-23 responsiveness on cells expressing both subunits. Human IL-23, but not IL-12, exhibits detectable affinity for human IL-23R. Anti-IL-12Rbeta1 and anti-IL-23R Abs block IL-23 responses of an NK cell line and Ba/F3 cells expressing the two receptor chains. IL-23 activates the same Jak-stat signaling molecules as IL-12: Jak2, Tyk2, and stat1, -3, -4, and -5, but stat4 activation is substantially weaker and different DNA-binding stat complexes form in response to IL-23 compared with IL-12. IL-23R associates constitutively with Jak2 and in a ligand-dependent manner with stat3. The ability of cells to respond to IL-23 or IL-12 correlates with expression of IL-23R or IL-12Rbeta2, respectively. The human IL-23R gene is on human chromosome 1 within 150 kb of IL-12Rbeta2.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                26 June 2018
                2018
                : 8
                : 197
                Affiliations
                [1] 1Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna , La Laguna, Spain
                [2] 2Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas , Granada, Spain
                Author notes

                Edited by: Javier Moreno, Instituto de Salud Carlos III, Spain

                Reviewed by: Lucile Maria Floeter-Winter, Universidade de São Paulo, Brazil; Herbert Leonel de Matos Guedes, Universidade Federal do Rio de Janeiro, Brazil

                *Correspondence: Emma Carmelo ecarmelo@ 123456ull.edu.es

                †Present Address: Yasmina E. Hernández-Santana, National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland

                Article
                10.3389/fcimb.2018.00197
                6036295
                30013952
                331a7067-4194-4801-9b50-363bf3d34b55
                Copyright © 2018 Ontoria, Hernández-Santana, González-García, López, Valladares and Carmelo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 March 2018
                : 28 May 2018
                Page count
                Figures: 6, Tables: 5, Equations: 5, References: 93, Pages: 16, Words: 11579
                Funding
                Funded by: Fundación CajaCanarias 10.13039/100012000
                Award ID: 2015BIO14
                Funded by: Ministerio de Economía y Competitividad 10.13039/501100003329
                Award ID: PI11/02172
                Award ID: RD16/0027/0005
                Award ID: RD16/0027/0001
                Award ID: SAF2016-81003-R
                Categories
                Cellular and Infection Microbiology
                Original Research

                Infectious disease & Microbiology
                leishmania infantum,transcriptional profiling,high-throughput qpcr,immune responses,regression models,biomarkers

                Comments

                Comment on this article