33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNA Polymerase II Mutations Conferring Defects in Poly(A) Site Cleavage and Termination in Saccharomyces cerevisiae

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcription termination by RNA polymerase (Pol) II is an essential but poorly understood process. In eukaryotic nuclei, the 3′ ends of mRNAs are generated by cleavage and polyadenylation, and the same sequence elements that specify that process are required for downstream release of the polymerase from the DNA. Although Pol II is known to bind proteins required for both events, few studies have focused on Pol II mutations as a means to uncover the mechanisms that couple polyadenylation and termination. We performed a genetic screen in the yeast Saccharomyces cerevisiae to isolate mutations in the N-terminal half of Rpb2, the second largest Pol II subunit, that conferred either a decreased or increased response to a well-characterized poly(A) site. Most of the mutant alleles encoded substitutions affecting either surface residues or conserved active site amino acids at positions important for termination by other RNA polymerases. Reverse transcription polymerase chain reaction experiments revealed that transcript cleavage at the poly(A) site was impaired in both classes of increased readthrough mutants. Transcription into downstream sequences beyond where termination normally occurs was also probed. Although most of the tested readthrough mutants showed a reduction in termination concomitant with the reduced poly(A) usage, these processes were uncoupled in at least one mutant strain. Several rpb2 alleles were found to be similar or identical to published mutants associated with defective TFIIF function. Tests of these and additional mutations known to impair Rpb2−TFIIF interactions revealed similar decreased readthrough phenotypes, suggesting that TFIIF may have a role in 3′ end formation and termination.

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.

          Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis.

            Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II.

              The carboxy-terminal domain (CTD) of the RNA polymerase II (RNApII) largest subunit consists of multiple heptapeptide repeats with the consensus sequence YSPTSPS. Different CTD phosphorylation patterns act as recognition sites for the binding of various messenger RNA processing factors, thereby coupling transcription and mRNA processing. Polyadenylation factors are co-transcriptionally recruited by phosphorylation of CTD serine 2 (ref. 2) and these factors are also required for transcription termination. RNApII transcribes past the poly(A) site, the RNA is cleaved by the polyadenylation machinery, and the RNA downstream of the cleavage site is degraded. Here we show that Rtt103 and the Rat1/Rai1 5' --> 3' exonuclease are localized at 3' ends of protein coding genes. In rat1-1 or rai1Delta cells, RNA 3' to polyadenylation sites is greatly stabilized and termination defects are seen at many genes. These findings support a model in which poly(A) site cleavage and subsequent degradation of the 3'-downstream RNA by Rat1 trigger transcription termination.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                ggg
                ggg
                ggg
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 February 2013
                February 2013
                : 3
                : 2
                : 167-180
                Affiliations
                Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.004531/-/DC1

                [1]

                These authors contributed equally to this work.

                [2 ]Corresponding author: Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd., Eugene, OR 97403-1229. E-mail: dhawley@ 123456uoregon.edu
                Article
                GGG_004531
                10.1534/g3.112.004531
                3564978
                23390594
                3362449e-1c5c-40cd-a9c1-3b771805acde
                Copyright © 2013 Kubicek et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 September 2012
                : 27 November 2012
                Categories
                Investigations
                Custom metadata
                v1

                Genetics
                polyadenylation,eukaryotic transcription,rpb2 gene mutations
                Genetics
                polyadenylation, eukaryotic transcription, rpb2 gene mutations

                Comments

                Comment on this article