17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calcium and Potassium Channels in Experimental Subarachnoid Hemorrhage and Transient Global Ischemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group.

          In clinical trials and observational studies there is considerable inconsistency in the use of definitions to describe delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage. A major cause for this inconsistency is the combining of radiographic evidence of vasospasm with clinical features of cerebral ischemia, although multiple factors may contribute to DCI. The second issue is the variability and overlap of terms used to describe each phenomenon. This makes comparisons among studies difficult. An international ad hoc panel of experts involved in subarachnoid hemorrhage research developed and proposed a definition of DCI to be used as an outcome measure in clinical trials and observational studies. We used a consensus-building approach. It is proposed that in observational studies and clinical trials aiming to investigate strategies to prevent DCI, the 2 main outcome measures should be: (1) cerebral infarction identified on CT or MRI or proven at autopsy, after exclusion of procedure-related infarctions; and (2) functional outcome. Secondary outcome measure should be clinical deterioration caused by DCI, after exclusion of other potential causes of clinical deterioration. Vasospasm on angiography or transcranial Doppler can also be used as an outcome measure to investigate proof of concept but should be interpreted in conjunction with DCI or functional outcome. The proposed measures reflect the most relevant morphological and clinical features of DCI without regard to pathogenesis to be used as an outcome measure in clinical trials and observational studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological roles and properties of potassium channels in arterial smooth muscle.

            This review examines the properties and roles of the four types of K+ channels that have been identified in the cell membrane of arterial smooth muscle cells. 1) Voltage-dependent K+ (KV) channels increase their activity with membrane depolarization and are important regulators of smooth muscle membrane potential in response to depolarizing stimuli. 2) Ca(2+)-activated K+ (KCa) channels respond to changes in intracellular Ca2+ to regulate membrane potential and play an important role in the control of myogenic tone in small arteries. 3) Inward rectifier K+ (KIR) channels regulate membrane potential in smooth muscle cells from several types of resistance arteries and may be responsible for external K(+)-induced dilations. 4) ATP-sensitive K+ (KATP) channels respond to changes in cellular metabolism and are targets of a variety of vasodilating stimuli. The main conclusions of this review are: 1) regulation of arterial smooth muscle membrane potential through activation or inhibition of K+ channel activity provides an important mechanism to dilate or constrict arteries; 2) KV, KCa, KIR, and KATP channels serve unique functions in the regulation of arterial smooth muscle membrane potential; and 3) K+ channels integrate a variety of vasoactive signals to dilate or constrict arteries through regulation of the membrane potential in arterial smooth muscle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The changing landscape of ischaemic brain injury mechanisms.

              Thrombolysis has become established as an acute treatment for human stroke. But despite multiple clinical trials, neuroprotective strategies have yet to be proved effective in humans. Here we discuss intrinsic tissue mechanisms of ischaemic brain injury, and present a perspective that broadening of therapeutic targeting beyond excitotoxicity and neuronal calcium overload will be desirable for developing the most effective neuroprotective therapies.
                Bookmark

                Author and article information

                Journal
                Stroke Res Treat
                Stroke Res Treat
                SRT
                Stroke Research and Treatment
                Hindawi Publishing Corporation
                2090-8105
                2042-0056
                2012
                9 December 2012
                : 2012
                : 382146
                Affiliations
                1Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
                2Institute for Neurophysiology, University of Cologne, Robert-Koch-Straße 39, 50931 Cologne, Germany
                3Center of Molecular Medicine, Cologne, Germany
                Author notes

                Academic Editor: R. Loch Macdonald

                Article
                10.1155/2012/382146
                3518967
                23251831
                33881811-70eb-4e7d-af20-f36f9e5358e7
                Copyright © 2012 Marcel A. Kamp et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 September 2012
                : 27 October 2012
                Categories
                Review Article

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article

                scite_

                Similar content187

                Cited by7

                Most referenced authors730