The development of cardiovascular diseases (CVDs) is due to a complex interaction between the genome and the environment. Understanding how genetic differences in individuals contribute to their susceptibility to CVDs can help guide practitioners to give the best advice to achieve a favorable outcome for the patient. As genome technologies evolve, genotyping of individuals could be available to all patients using a simple saliva test. Large-scale genome-wide association studies and meta analyses have provided powerful insights into polymorphisms that may be predictive of disease and an individual's response to certain nutrients, but moving forward it is imperative that these insights can be applied in the medical setting to reduce the incidence and mortality of CVDs.
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and while most CVDs can be prevented by adopting a healthy lifestyle, this is only half the story. Evidence suggests changes in an individual's genes or DNA can cause some form of CVDs, highlighting a complex relationship between genes and the environment. Genotyping, a process used to determine genetic differences within an individual's DNA, can provide doctors with relevant information to identify individuals who are at high risk of developing CVDs. This would allow treatment to begin early and encourage individuals to adopt a healthy lifestyle to reduce their risk.