136
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Graph Theory Enables Drug Repurposing – How a Mathematical Model Can Drive the Discovery of Hidden Mechanisms of Action

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Structural mechanism for STI-571 inhibition of abelson tyrosine kinase.

          The inadvertent activation of the Abelson tyrosine kinase (Abl) causes chronic myelogenous leukemia (CML). A small-molecule inhibitor of Abl (STI-571) is effective in the treatment of CML. We report the crystal structure of the catalytic domain of Abl, complexed to a variant of STI-571. Critical to the binding of STI-571 is the adoption by the kinase of an inactive conformation, in which a centrally located "activation loop" is not phosphorylated. The conformation of this loop is distinct from that in active protein kinases, as well as in the inactive form of the closely related Src kinases. These results suggest that compounds that exploit the distinctive inactivation mechanisms of individual protein kinases can achieve both high affinity and high specificity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug-target interaction prediction by random walk on the heterogeneous network.

            Predicting potential drug-target interactions from heterogeneous biological data is critical not only for better understanding of the various interactions and biological processes, but also for the development of novel drugs and the improvement of human medicines. In this paper, the method of Network-based Random Walk with Restart on the Heterogeneous network (NRWRH) is developed to predict potential drug-target interactions on a large scale under the hypothesis that similar drugs often target similar target proteins and the framework of Random Walk. Compared with traditional supervised or semi-supervised methods, NRWRH makes full use of the tool of the network for data integration to predict drug-target associations. It integrates three different networks (protein-protein similarity network, drug-drug similarity network, and known drug-target interaction networks) into a heterogeneous network by known drug-target interactions and implements the random walk on this heterogeneous network. When applied to four classes of important drug-target interactions including enzymes, ion channels, GPCRs and nuclear receptors, NRWRH significantly improves previous methods in terms of cross-validation and potential drug-target interaction prediction. Excellent performance enables us to suggest a number of new potential drug-target interactions for drug development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.

              Clinical diseases are characterized by distinct phenotypes. To identify disease genes is to elucidate the gene-phenotype relationships. Mutations in functionally related genes may result in similar phenotypes. It is reasonable to predict disease-causing genes by integrating phenotypic data and genomic data. Some genetic diseases are genetically or phenotypically similar. They may share the common pathogenetic mechanisms. Identifying the relationship between diseases will facilitate better understanding of the pathogenetic mechanism of diseases. In this article, we constructed a heterogeneous network by connecting the gene network and phenotype network using the phenotype-gene relationship information from the OMIM database. We extended the random walk with restart algorithm to the heterogeneous network. The algorithm prioritizes the genes and phenotypes simultaneously. We use leave-one-out cross-validation to evaluate the ability of finding the gene-phenotype relationship. Results showed improved performance than previous works. We also used the algorithm to disclose hidden disease associations that cannot be found by gene network or phenotype network alone. We identified 18 hidden disease associations, most of which were supported by literature evidence. The MATLAB code of the program is available at http://www3.ntu.edu.sg/home/aspatra/research/Yongjin_BI2010.zip.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                9 January 2014
                : 9
                : 1
                : e84912
                Affiliations
                [1 ]Department of Mathematics, King's College London, London, United Kingdom
                [2 ]Therametrics AG, Stans, Switzerland
                [3 ]Department of Computer Science, University College London, London, United Kingdom
                University of Namur, Belgium
                Author notes

                Competing Interests: The authors declare competing financial interests: RG, DB, SG and MB are employed by Therametrics (formerly Mondobiotech AG) and detain stock options of the Company. The presented methodology is part of the research tools currently employed and licensed to Therametrics AG. The methodology described in this paper, concerning the use of the semantic approach to investigate public knowhow and building a knowledge network, alongside the exploitation of certain graph theory instruments to discover emergent patterns, has been filed by RG at the European International Patent Office (application PCT/EP2013/050056). The financial competing interests do not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: TA RG TDM SG MB DB. Performed the experiments: TA RG TDM SG MB DB. Analyzed the data: TA RG TDM SG MB DB. Contributed reagents/materials/analysis tools: TA RG TDM SG MB DB. Wrote the paper: TA RG TDM SG MB DB.

                Article
                PONE-D-13-25422
                10.1371/journal.pone.0084912
                3886994
                24416311
                33c48f8f-259b-46a0-ba09-5f9a59307e4e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 June 2013
                : 28 November 2013
                Page count
                Pages: 10
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Biology
                Biotechnology
                Drug Discovery
                Computational Biology
                Text Mining
                Computer Science
                Text Mining
                Mathematics
                Applied Mathematics
                Complex Systems
                Medicine
                Drugs and Devices
                Drug Research and Development
                Drug Discovery
                Drug Information
                Physics
                Statistical Mechanics
                Social and Behavioral Sciences
                Information Science
                Information Theory
                Linguistics
                Computational Linguistics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article