Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of insulin and glargine on outgrowth and number of circulating endothelial progenitor cells in type 2 diabetes patients: a partially double-blind, randomized, three-arm unicenter study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Endothelial progenitor cells (EPC) are bone marrow-derived cells which can undergo differentiation into endothelial cells and participate in endothelial repair and angiogenesis. Insulin facilitates this in vitro mediated by the IGF-1 receptor. Clinical trials showed that the number of circulating EPCs is influenced by glucose control and EPC are a predictor of cardiovascular death. To study direct effects of insulin treatment on EPCs in type 2 diabetes patients, add-on basal insulin treatment was compared to an escalation of oral medication aiming at similar glucose control between the groups.

          Methods

          55 patients with type 2 diabetes (61.6±5.9 years) on oral diabetes medication were randomized in a 2:2:1 ratio in 3 groups. Patients were treated additionally with insulin glargine (n=20), NPH insulin (n=22) or escalated with oral medication (n=13). Number of circulating EPC, EPC-outgrowth, intima media thickness, skin microvascular function and HbA1c were documented at baseline and/or after 4 weeks and 4 months.

          Results

          HbA1c at baseline was, 7.3+/−0.7% in the oral group, 7.3+/−0.9% and 7.5+/−0.7% in the glargine and NPH insulin respectively (p=0.713). HbA1c after 4 months decreased to 6.8+/−0.8%, 6.6+/−0.7% and 6.7+/−0.6%, in the oral, glargine and NPH insulin group respectively (p=0.61). FACS analysis showed no difference in number of circulating EPC between the groups after 4 weeks and 4 months. However, the outgrowth of EPCs as detected by colony forming assay was increased in the NPH insulin and glargine groups (29.2+/−6.4 and 29.4+/− 6.7 units respectively) compared to the group on oral medication (23.2+/−6.3, p=0.013) after 4 months of treatment. A significant decrease of IMT from 0.80mm (+/−0.14) at baseline to 0.76mm (+/−0.12) after 4 months could be observed in all patients only (p=0.03) with a trend towards a reduction of IMT after 4 months when all patients on insulin treatment were compared to the oral treatment group (p=0.06). Skin microvascular function revealed no differences between the groups (p=0.74).

          Conclusion

          The study shows that a 4-month treatment with add-on insulin significantly increases the outgrowth of EPC in patients with type 2 diabetes mellitus.

          Trial registration

          (Clinical Trials Identifier: NCT00523393).

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus.

          In persons with diabetes, chronic hyperglycemia (assessed by glycosylated hemoglobin level) is related to the development of microvascular disease; however, the relation of glycosylated hemoglobin to macrovascular disease is less clear. To conduct a meta-analysis of observational studies of the association between glycosylated hemoglobin and cardiovascular disease in diabetic persons. Search of the MEDLINE database by using Medical Subject Heading search terms and key words related to glycosylated hemoglobin, diabetes, and cardiovascular disease. Prospective cohort studies with data on glycosylated hemoglobin levels and incident cardiovascular disease. Relative risk estimates were derived or abstracted from each cohort study that met the inclusion criteria. Adjusted relative risk estimates for glycosylated hemoglobin (total glycosylated hemoglobin, hemoglobin A1, or hemoglobin A1c levels) and cardiovascular disease events (coronary heart disease and stroke) were pooled by using random-effects models. Three studies involved persons with type 1 diabetes (n = 1688), and 10 studies involved persons with type 2 diabetes (n = 7435). The pooled relative risk for cardiovascular disease was 1.18; this represented a 1-percentage point increase in glycosylated hemoglobin level (95% CI, 1.10 to 1.26) in persons with type 2 diabetes. Results in persons with type 1 diabetes were similar but had a wider CI (pooled relative risk, 1.15 [CI, 0.92 to 1.43]). This review largely reflects the limitations of the literature. Important concerns were residual confounding, the possibility of publication bias, the small number of studies, and the heterogeneity of study results. Pending confirmation from large, ongoing clinical trials, this analysis shows that observational studies are consistent with limited clinical trial data and suggests that chronic hyperglycemia is associated with an increased risk for cardiovascular disease in persons with diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group.

            Among patients with type 1 diabetes mellitus, intensive therapy (with the aim of achieving near-normal blood glucose and glycosylated hemoglobin concentrations [hemoglobin A1c]) markedly reduces the risk of microvascular complications as compared with conventional therapy. To assess whether these benefits persist, we compared the effects of former and intensive conventional therapy on the recurrence and severity of retinopathy and nephropathy for four years after the end of the Diabetes Control and Complications Trial (DCCT). At the end of the DCCT, the patients in the conventional-therapy group were offered intensive therapy, and the care of all patients was transferred to their own physicians. Retinopathy was evaluated on the basis of centrally graded fundus photographs in 1208 patients during the fourth year after the DCCT ended, and nephropathy was evaluated on the basis of urine specimens obtained from 1302 patients during the third or fourth year, approximately half of whom were from each treatment group. The difference in the median glycosylated hemoglobin values between the conventional-therapy and intensive-therapy groups during the 6.5 years of the DCCT (average, 9.1 percent and 7.2 percent, respectively) narrowed during follow-up (median during 4 years, 8.2 percent and 7.9 percent, respectively, P<0.001). Nevertheless, the proportion of patients who had worsening retinopathy, including proliferative retinopathy, macular edema, and the need for laser therapy, was lower in the intensive-therapy group than in the conventional-therapy group (odds reduction, 72 percent to 87 percent, P<0.001). The proportion of patients with an increase in urinary albumin excretion was significantly lower in the intensive-therapy group. The reduction in the risk of progressive retinopathy and nephropathy resulting from intensive therapy in patients with type 1 diabetes persists for at least four years, despite increasing hyperglycemia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use.

              In recent years, analogs of human insulin have been engineered with the aim of improving therapy for people with diabetes. To ensure that the safety profile of the human hormone is not compromised by the molecular modifications, the toxico-pharmacological properties of insulin analogs should be carefully monitored. In this study, we compared the insulin and IGF-I receptor binding properties and metabolic and mitogenic potencies of insulin aspart (B28Asp human insulin), insulin lispro (B28Lys,B29Pro human insulin), insulin glargine (A21Gly,B31Arg,B32Arg human insulin), insulin detemir (NN304) [B29Lys(epsilon-tetradecanoyl), desB30 human insulin], and reference insulin analogs. Receptor affinities were measured using purified human receptors, insulin receptor dissociation rates were determined using Chinese hamster ovary cells overexpressing the human insulin receptor, metabolic potencies were evaluated using primary mouse adipocytes, and mitogenic potencies were determined in human osteosarcoma cells. Metabolic potencies correlated well with insulin receptor affinities. Mitogenic potencies in general correlated better with IGF-I receptor affinities than with insulin receptor off-rates. The 2 rapid-acting insulin analogs aspart and lispro resembled human insulin on all parameters, except for a slightly elevated IGF-I receptor affinity of lispro. In contrast, the 2 long-acting insulin analogs, glargine and detemir, differed significantly from human insulin. The combination of the B31B32diArg and A21Gly substitutions provided insulin glargine with a 6- to 8-fold increased IGF-I receptor affinity and mitogenic potency compared with human insulin. The attachment of a fatty acid chain to LysB29 provided insulin detemir with reduced receptor affinities and metabolic and mitogenic potencies but did not change the balance between mitogenic and metabolic potencies. The safety implications of the increased growth-stimulating potential of insulin glargine are unclear. The reduced in vitro potency of insulin detemir might explain why this analog is not as effective on a molar basis as human insulin in humans.
                Bookmark

                Author and article information

                Contributors
                dimitrios.oikonomou@med.uni-heidelberg.de
                stefan.kopf@med.uni-heidelberg.de
                ruediger.vonbauer@med.uni-heidelberg.de
                zdenkadjuric@hotmail.com
                rita.cebola@med.uni-heidelberg.de
                sander@imbi.uni-heidelberg.de
                englert@imbi.uni-heidelberg.de
                spiridon.vittas@med.uni-heidelberg.de
                asa.hidmark@med.uni-heidelberg.de
                morcos@stoffwechselzentrum-rhein-pfalz.de
                grigorios.korosoglou@med.uni-heidelberg.de
                peter.nawroth@med.uni-heidelberg.de
                humpert@stoffwechselzentrum-rhein-pfalz.de
                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central (London )
                1475-2840
                11 October 2014
                11 October 2014
                2014
                : 13
                : 1
                : 137
                Affiliations
                [ ]Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
                [ ]Roche Diagnostics Deutschland GmbH Mannheim, Mannheim, Germany
                [ ]Department of Cardiology, University of Heidelberg, Heidelberg, Germany
                [ ]Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
                [ ]Stoffwechselzentrum Rhein Pfalz, Mannheim, Germany
                Article
                137
                10.1186/s12933-014-0137-4
                4195950
                25300286
                33cd6344-24e9-499a-b72d-9cf5cbf153ff
                © Oikonomou et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 June 2014
                : 30 September 2014
                Categories
                Original Investigation
                Custom metadata
                © The Author(s) 2014

                Endocrinology & Diabetes
                insulin glargine,type 2 diabetes,endothelial progenitor cells
                Endocrinology & Diabetes
                insulin glargine, type 2 diabetes, endothelial progenitor cells

                Comments

                Comment on this article